We have investigated the lasing characteristics of Tm:LSO crystal in three operation regimes: continuous wave (CW), wavelength tunable and passive Q-switching based on graphene. In CW regime, a maximum output power of 0.65 W at 2054.9 nm with a slope efficiency of 21% was achieved. With a quartz plate, a broad wavelength tunable range of 145 nm was obtained, corresponding to a FWHM of 100 nm. By using a graphene saturable absorber mirror, the passively Q-switched Tm:LSO laser produced pulses with duration of 7.8 μs at 2030.8 nm under a repetition rate of 7.6 kHz, corresponding to pulse energy of 14.0 μJ.
We developed a high power optical parametric chirped-pulse amplification (OPCPA) system at 2.1 µm harnessing a 500 W Yb:YAG thin disk laser as the only pump and signal generation source. The OPCPA system operates at 10 kHz with a single pulse energy of up to 2.7 mJ and pulse duration of 30 fs. The maximum average output power of 27 W sets a new record for an OPCPA system in the 2 µm wavelength region. The soft X-ray continuum generated through high harmonic generation with this driver laser can extend to around 0.55 keV, thus covering the entire water window (284 eV-543 eV). With a repetition rate still enabling pump-probe experiments on solid samples, the system can be used for many applications.
Electric-field induced second harmonic generation with a femtosecond Ti:sapphire pump laser in atmospheric air is investigated. Phase matching between fundamental and second harmonic waves is achieved via quasi-phase matching, employing periodic electrode arrangements on printed circuit boards with a total length of about 0.5 m. The weak chromatic dispersion of the atmospheric air enables broadband phase matching conditions and makes this method tailorable for frequency doubling broadband femtosecond laser pulses. A maximum energy of 0.13 nJ is observed in a 20 nm bandwidth around 395 nm.
The concept of coherence is of fundamental importance for describing the physical characteristics of light and for evaluating the suitability for experimental application. In the case of pulsed laser sources, the pulse-to-pulse coherence is usually considered for a judgment of the compressibility of the pulse train. This type of coherence is often lost during propagation through a highly nonlinear medium, and pulses prove incompressible despite multioctave spectral coverage. Notwithstanding the apparent loss of interpulse coherence, however, supercontinua enable applications in precision frequency metrology that rely on coherence between different spectral components within a laser pulse. To judge the suitability of a light source for the latter application, we define an alternative criterion, which we term intrapulse coherence. This definition plays a limiting role in the carrier-envelope phase measurement and stabilization of ultrashort pulses. It is shown by numerical simulation and further corroborated by experimental data that filamentation-based supercontinuum generation may lead to a loss of intrapulse coherence despite near-perfect compressibility of the pulse train. This loss of coherence may severely limit active and passive carrier-envelope phase stabilization schemes and applications in optical high-field physics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.