Developing low-cost and highly-efficient non-precious metal bifunctional electrocatalysts towards the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is an attractively alternative strategy to solve the environmental pollution problems and energy demands. In this study, metal-organic framework (MOF) derived porous cobalt poly-phosphide (CoP) concave polyhedrons are prepared and explored as superior bifunctional electrocatalysts for the HER and OER. The prepared MOF derived CoP concave polyhedrons show excellent electrocatalytic activity and stability towards the HER and OER in both acidic and alkaline media, with the Tafel slopes of 53 mV dec and 76 mV dec and a current density of 10 mA cm at the overpotentials of -78 and 343 mV for the HER and OER, respectively, which are remarkably superior to those of the transition metal phosphides (TMPs) and comparable to those of the commercial precious metal catalysts. In addition, they also offer efficient catalytic activities and durabilities under neutral and basic conditions for the HER. The results of our study may shed light on the direction towards highly efficient bifunctional TMP electrocatalysts with high phosphorous component.
Self-supported cobalt poly-phosphide nanoneedle arrays (CoP3 NAs) were prepared on carbon fiber paper (CFP) as an integrated 3D efficient bifunctional electrocatalyst.
MXenes with good conductivity and hydrophilicity are a new family of potential electrocatalysts (e.g., for hydrogen evolution). However, pristine MXenes usually show unsatisfactory catalytic activity compared with traditional platinum group metal electrocatalysts. We introduce both phosphorus and oxygen into Mo 2 CT x MXenes through a simple phosphorization course. The phosphorized Mo 2 CT x MXenes exhibit significantly improved electrocatalytic performance toward hydrogen evolution reaction compared with pristine Mo 2 CT x MXenes, with a dramatic decrease in overpotential (more than 100 mV at 10 mA cm −2 ). Theoretical computation suggests that P and O doped Mo 2 CT x MXenes possess a metallic band structure and an optimal hydrogen adsorption, which lead to improved conductivity and electrocatalytic kinetics, respectively. This work not only advances the understanding of property-tuning of the latest two-dimensional MXene materials but also paves the way for the development of MXene-based materials that can be applied in the field of energy conversion and storage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.