In recent years, the number of malware on the Android platform has been increasing, and with the widespread use of code obfuscation technology, the accuracy of antivirus software and traditional detection algorithms is low. Current state-of-the-art research shows that researchers started applying deep learning methods for malware detection. We proposed an Android malware detection algorithm based on a hybrid deep learning model which combines deep belief network (DBN) and gate recurrent unit (GRU). First of all, analyze the Android malware; in addition to extracting static features, dynamic behavioral features with strong antiobfuscation ability are also extracted. Then, build a hybrid deep learning model for Android malware detection. Because the static features are relatively independent, the DBN is used to process the static features. Because the dynamic features have temporal correlation, the GRU is used to process the dynamic feature sequence. Finally, the training results of DBN and GRU are input into the BP neural network, and the final classification results are output. Experimental results show that, compared with the traditional machine learning algorithms, the Android malware detection model based on hybrid deep learning algorithms has a higher detection accuracy, and it also has a better detection effect on obfuscated malware.
In order to solve the problem that the traditional signature-based detection technology cannot effectively detect unknown malware, we propose in this study a smartphone malware detection model (SP-MDM) based on artificial immune system, in which static malware analysis and dynamic malware analysis techniques are combined, and antigens are generated by encoding the characteristics extracted from the malware.Based on negative selection algorithm, the mature detectors are generated. By introducing clonal selection algorithm, the detectors with higher affinity are selected to undergo a proliferation and somatic hyper-mutation process, so that more excellent detector offspring can be generated.Experimental result shows that the detection model has a higher detection rate for unknown smartphone malware, and better detection performance can be achieved by increasing the clone generation.
Android malware detection is a complex and crucial issue. In this paper, we propose a malware detection model using a support vector machine (SVM) method based on feature weights that are computed by information gain (IG) and particle swarm optimization (PSO) algorithms. The IG weights are evaluated based on the relevance between features and class labels, and the PSO weights are adaptively calculated to result in the best fitness (the performance of the SVM classification model). Moreover, to overcome the defects of basic PSO, we propose a new adaptive inertia weight method called fitness-based and chaotic adaptive inertia weight-PSO (FCAIW-PSO) that improves on basic PSO and is based on the fitness and a chaotic term. The goal is to assign suitable weights to the features to ensure the best Android malware detection performance. The results of experiments indicate that the IG weights and PSO weights both improve the performance of SVM and that the performance of the PSO weights is better than that of the IG weights.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.