MicroRNAs play critical roles in the development and progression of non-small cell lung cancer (NSCLC). miR-96 acts as an oncogene in some malignancies, while its role in NSCLC is unclear. Here, we validated that miR-96 was significantly increased in both human NSCLC tissues and cell lines. Inhibition of miR-96 expression remarkably reduced cell proliferation, colony formation, migration, and invasion of NSCLC cells. Reversion-inducing-cysteine-rich protein with kazal motifs (RECK) was identified as a target of miR-96 in NSCLC cells. In addition, the expression of RECK was found to be negatively correlated with the expression of miR-96 in NSCLC tissues. Our data suggest that miR-96 might promote the growth and motility of NSCLC cells partially by targeting RECK.
Non-small cell lung cancer (NSCLC) is one of the most common causes of cancer-related death worldwide. MicroRNAs (miRNAs) play critical roles in the development and progression of NSCLC. miR-195 acts as a tumor suppressor in several cancers, however, its role in NSCLC is not well understood. Herein, we found that miR-195 was significantly decreased in both NSCLC tissues and cell lines. Forced expression of miR-195 significantly suppressed proliferation, migration, and invasion of NSCLC cells. Hepatoma-derived growth factor (HDGF) was identified as a target of miR-195 in NSCLC cells. Overexpression of HDGF dramatically abolished the tumor suppressive role of miR-195 in NSCLC cells. Our results demonstrated a tumor suppressive role of miR-195 in NSCLC, and suggested a potential therapeutic target for NSCLC.
Background: Exosomal microRNAs (miRNAs or miRs) from bone marrow-derived mesenchymal stem cells (UCMSCs) have emerged as promising therapeutic strategies for cancer treatment. The current study aimed to elucidate the underlying mechanism of human umbilical cord mesenchymal stem cells (hUCMSCs)-derived exosomal miR-375 in esophageal squamous cell carcinoma (ESCC). Methods: After determining the expression of miR-375 and its putative target enabled homolog (ENAH) in ESCC tissues and cells, we tested effects of their altered expression on ESCC proliferation, invasion, migration, and tumorsphere formation was subsequently measured. Transfected hUCMSCs-derived exosomes (hUCMSCs-exo) were isolated and co-cultured with ESCC cells to measure the effects of miR-375 delivered by hUCMSCs-exo on ESCC development. Finally, we investigated the effect of miR-375 on tumor growth in vivo. Results: The expression of miR-375 was reduced, while the expression of ENAH was elevated in ESCC. ENAH was identified as a target gene of miR-375. Elevated miR-375 or depleted ENAH expression inhibited ESCC cell proliferation, invasion, migration, tumorsphere formation, and promoted apoptosis. Moreover, miR-375 delivered by hUCMSCs-exo could suppress ESCC cell proliferation, invasion, migration, tumorsphere formation, but promoted apoptosis in vitro, as well as inhibiting tumor growth in vivo. Conclusions: Taken together, hUCMSCs-exo can deliver miR-375 to suppress ENAH expression and subsequently inhibit the initiation and progression of ESCC.
Background Esophageal squamous cell carcinoma (ESCC) is the eighth most common cancer worldwide and is one of the most lethal malignancies. Cisplatin (DDP) is a key drug for ESCC treatment, but the presence of chemotherapy resistance limits the use of DDP. To enhance chemosensitivity to DDP is important for ESCC treatment. Methods qRT-PCR and Western blotting detected mRNA and protein expression in ESCC tissues and cells. Luciferase reporter assay assessed the interaction between miR-145 and AKT3. Cell cycle, apoptosis and proliferation were investigated with flow cytometry and MTT assay, respectively. Nude mice xenograft model was established, and immunohistochemistry (IHC) and TUNEL assay were conducted to detect Ki-67 level and apoptosis in xenograft tumor. Results Down-regulated miR-145 and up-regulated AKT3 were observed in ESCC tissues and cells. Luciferase reporter assay revealed that miR-145 negatively regulated AKT3 through binding to its 3′-UTR. Overexpression of miR-145 or knockdown of AKT3 promoted DDP-induced cell cycle arrest and apoptosis, as well as reduced IC50 of DDP treatment, which was reversed by AKT3 overexpression. The expression level of MRP1, P-gp, CyclinD1, c-Myc and anti-apoptotic protein Bcl-2 were down-regulated, while pro-apoptotic protein Bax was up-regulated by miR-145. Furthermore, overexpression of miR-145 enhanced the DDP-induced tumor growth suppression in vivo. Conclusion miR-145 increased the sensitivity of ESCC to DDP, and facilitated DDP-induced apoptosis, cycle arrest by directly inhibiting PI3K/AKT signaling pathway to decrease multidrug resistance-associated proteins MRP1 and P-gp expression. Improving the efficacy of DDP by boosting the miR-145 level provides a new strategy for treatment of ESCC.
Background: The classical inflammatory biomarker, C-reactive protein (CRP), has been identified to be related to progression of esophageal cancer. Some research showed that elevated pretreatment serum CRP indicated a poor prognosis, but results have been inconsistent. Materials and Methods: We searched the Medline, Embase and the Cochrane Central Search Library for suitable studies and a meta-analysis of eleven (1,886 patients) was conducted to examine the relationship between elevated serum CRP level and overall survival (OS) in esophageal cancer cases. Moreover, correlation analyses were conducted to assess links between pretreatment serum CRP level and tumor node metastasis (TNM) stage as well as T, N, M grade, respectively. Results: The pooled analysis showed that elevated pretreatment serum CRP level was significantly associated with poorer overall survival (HR 2.09, 95%CI 1.52-2.87, p<0.01). Subgroup analyses were conducted by "country", "cut-off value", "treatment" and "number of patients", and no single factor could alter the result. Elevated pretreatment serum CRP was significantly correlated with more advanced TNM stage and T, N, M grade respectively. Conclusions: Elevated pretreatment serum CRP levels are associated with poorer prognosis in esophageal cancer patients, and could serve as a useful biomarker for outcome prediction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.