During the ongoing outbreak of coronavirus disease (COVID-19), people use social media to acquire and exchange various types of information at a historic and unprecedented scale. Only the situational information are valuable for the public and authorities to response to the epidemic. Therefore, it is important to identify such situational information and to understand how it is being propagated on social media, so that appropriate information publishing strategies can be informed for the COVID-19 epidemic. This article sought to fill this gap by harnessing Weibo data and natural language processing techniques to classify the COVID-19-related information into seven types of situational information. We found specific features in predicting the reposted amount of each type of information. The results provide data-driven insights into the information need and public attention.
Daily electricity consumption forecasting is a classical problem. Existing forecasting algorithms tend to have decreased accuracy on special dates like holidays. This study decomposes the daily electricity consumption series into three components: trend, seasonal, and residual, and constructs a two-stage prediction method using piecewise linear regression as a filter and Dilated Causal CNN as a predictor. The specific steps involve setting breakpoints on the time axis and fitting the piecewise linear regression model with one-hot encoded information such as month, weekday, and holidays. For the challenging prediction of the Spring Festival, distance is introduced as a variable using a third-degree polynomial form in the model. The residual sequence obtained in the previous step is modeled using Dilated Causal CNN, and the final prediction of daily electricity consumption is the sum of the two-stage predictions. Experimental results demonstrate that this method achieves higher accuracy compared to existing approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.