The problem of route planning on road network is essential to many Location-Based Services (LBSs). Road networks are dynamic in the sense that the weights of the edges in the corresponding graph constantly change over time, representing evolving traffic conditions. Thus, a practical route planning strategy is required to supply the continuous route optimization considering the historic, current, and future traffic condition. However, few existing works comprehensively take into account these various traffic conditions during the route planning. Moreover, the LBSs usually suffer from extensive concurrent route planning requests in rush hours, which imposes a pressing need to handle numerous queries in parallel for reducing the response time of each query. However, this issue is also not involved by most existing solutions. We therefore investigate a parallel traffic condition driven route planning model on a cluster of processors. To embed the future traffic condition into the route planning, we employ a GCN model to periodically predict the travel costs of roads within a specified time period, which facilitates the robustness of the route planning model against the varying traffic condition. To reduce the response time, a Dual-Level Path (DLP) index is proposed to support a parallel route planning algorithm with the filter-and-refine principle. The bottom level of DLP partitions the entire graph into different subgraphs, and the top level is a skeleton graph that consists of all border vertices in all subgraphs. The filter step identifies a global directional path for a given query based on the skeleton graph. In the refine step, the overall route planning for this query is decomposed into multiple sub-optimizations in the subgraphs passed through by the directional path. Since the subgraphs are independently maintained by different processors, the sub-optimizations of extensive queries can be operated in parallel. Finally, extensive evaluations are conducted to confirm the effectiveness and superiority of the proposal.
As wastewater treatment usually involves complicated biochemical reactions, leading to strong coupling correlation and nonlinearity in water quality parameters, it is difficult to analyze and optimize the control of the wastewater treatment plant (WWTP) with traditional mathematical models. This research focuses on how deep learning techniques can be used to model the data from a specific WWTP so as to optimize the required energy consumption. In the operation of a wastewater treatment plant, various sensors are used to record the treatment process data; these data are used to train deep neural networks (DNNs). A long short-term memory with multilayer perceptron network (LMPNet) model is proposed to model the water quality parameters and site control parameters, such as COD, pH, NH3-N, et al., and the LMPNet model prediction error is then measured by criteria such as the MSE, MAE, and R2. The experimental results show that the LMPNet model demonstrates great accuracy in the modeling of the control of WWTPs. A life-long learning strategy is also developed for the LMPNet in order to adapt to the environment that may change over time. By developing performance evaluation metrics, the purification performance can be analyzed, and the prediction reference can be provided for the subsequent control optimization and energy saving plan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.