Water channel aquaporin-1 (AQP1) is expressed at epithelial cell plasma membranes in renal proximal tubules and thin descending limb of Henle. Recently, AQP1 was reported to interact with b-catenin. Here we investigated the relationship between AQP1 and Wnt signaling in in vitro and in vivo models of autosomal dominant polycystic kidney disease (PKD). AQP1 overexpression decreased b-catenin and cyclinD1 expression, suggesting down-regulation of Wnt signaling, and coimmunoprecipitation showed AQP1 interaction with bcatenin, glycogen synthase kinase 3b, LRP6, and Axin1. AQP1 inhibited cyst development and promoted branching in matrix-grown MDCK cells. In embryonic kidney cultures, AQP1 deletion increased cyst development by up to ∼40%. Kidney size and cyst number were significantly greater in AQP1-null PKD mice than in AQP1-expressing PKD mice, with the difference mainly attributed to a greater number of proximal tubule cysts. Biochemical analysis revealed decreased b-catenin phosphorylation and increased b-catenin expression in AQP1-null PKD mice, suggesting enhanced Wnt signaling. These results implicate AQP1 as a novel determinant in renal cyst development that may involve inhibition of Wnt signaling by an AQP1-macromolecular signaling
BackgroundIschemia reperfusion injury (IRI) is a leading cause of acute kidney injury (AKI) in both native and transplanted kidneys. The objective of the present study was to evaluate whether low-molecular-weight fucoidan (LMWF) could attenuate renal IRI in an animal model and in vitro cell models and study the mechanisms in which LMWF protected from IRI.Methodology/Principal FindingsMale mice were subjected to right renal ischemia for 30 min and reperfusion for 24 h, or to a sham operation with left kidney removed. Kidneys undergone IR showed characteristic morphological changes, such as tubular dilatation, and brush border loss. However, LMWF significantly corrected the renal dysfunction and the abnormal levels of MPO, MDA and SOD induced by IR. LMWF also inhibited the activation of MAPK pathways, which consequently resulted in a significant decrease in the release of cytochrome c from mitochondria, ratios of Bax/Bcl-2 and cleaved caspase-3/caspase-3, and phosphorylation of p53. LMWF alleviated hypoxia-reoxygenation or CoCl2 induced cell viability loss and ΔΨm dissipation in HK2 renal tubular epithelial cells, which indicates LMWF may result in an inhibition of the apoptosis pathway through reducing activity of MAPK pathways in a dose-dependent manner.Conclusions/SignificanceOur in vivo and in vitro studies show that LMWF ameliorates acute renal IRI via inhibiting MAPK signaling pathways. The data provide evidence that LMWF may serve as a potential therapeutic agent for acute renal IRI.
Urea transporters UT-A2 and UT-B are expressed in epithelia of thin descending limb of Henle's loop and in descending vasa recta, respectively. To study their role and possible interaction in the context of the urine concentration mechanism, a UT-A2 and UT-B double knockout (UT-A2/B knockout) mouse model was generated by targeted deletion of the UT-A2 promoter in embryonic stem cells with UT-B gene knockout. The UT-A2/B knockout mice lacked detectable UT-A2 and UT-B transcripts and proteins and showed normal survival and growth. Daily urine output was significantly higher in UT-A2/B knockout mice than that in wild-type mice and lower than that in UT-B knockout mice. Urine osmolality in UT-A2/B knockout mice was intermediate between that in UT-B knockout and wild-type mice. The changes in urine osmolality and flow rate, plasma and urine urea concentration, as well as non-urea solute concentration after an acute urea load or chronic changes in protein intake suggested that UT-A2 plays a role in the progressive accumulation of urea in the inner medulla. These results suggest that in wild-type mice UT-A2 facilitates urea absorption by urea efflux from the thin descending limb of short loops of Henle. Moreover, UT-A2 deletion in UT-B knockout mice partially remedies the urine concentrating defect caused by UT-B deletion, by reducing urea loss from the descending limbs to the peripheral circulation; instead, urea is returned to the inner medulla through the loops of Henle and the collecting ducts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.