Reprogramming of NK cells with a chimeric antigen receptor (CAR) proved an effective strategy to increase NK cell reactivity and recognition specificity toward tumor cells. To enhance the cytotoxicity of NK cells against CD138-positive multiple myeloma (MM) cells, we generated genetically modified NK-92MI cells carrying a CAR that consists of an anti-CD138 single-chain variable fragment (scFv) fused to the CD3ζ chain as a signaling moiety. The genetic modification through a lentiviral vector did not affect the intrinsic cytolytic activity of NK-92MI toward human erythroleukemic cell line K562 cells or CD138-negative targets. However, these retargeted NK-92MI (NK-92MI-scFv) displayed markedly enhanced cytotoxicity against CD138-positive human MM cell lines (RPMI8226, U266 and NCI-H929) and primary MM cells at various effector-to-target ratios (E:T) as compared to the empty vector-transfected NK-92MI (NK-92MI-mock). In line with the enhanced cytotoxicity of NK-92MI-scFv, significant elevations in the secretion of granzyme B, interferon-γ and proportion of CD107a expression were also found in NK-92MI-scFv in response to CD138-positive targets compared with NK-92MI-mock. Most importantly, the enhancement in the cytotoxicity of NK-92MI-scFv did not attenuate with 10Gy-irradiation that sufficiently blocked cell proliferation. Moreover, the irradiated NK-92MI-scFv exerted definitely intensified anti-tumor activity toward CD138-positive MM cells than NK-92MI-mock in the xenograft NOD-SCID mouse model. This study provides the rationale and feasibility for adoptive immunotherapy with CD138-specific CAR-modified NK cells in CD138-positive plasmacytic malignancies, which potentially further improves remission quality and prolongs the remission duration of patients with MM after upfront chemotherapy.
The unfolded protein response (UPR) is an essential pathway for both normal and malignant plasma cells to maintain endoplasmic reticulum (ER) homeostasis in response to the large amount of immunoglobulin (Ig) output. The inositol-requiring enzyme 1-X-box binding protein-1 (IRE1-XBP-1) arm of the UPR pathway has been shown to play crucial roles not only in relieving the ER stress by up-regulating a series of genes favoring ER-associated protein degradation and protein folding, but in mediating terminal plasmacytic differentiation and maturation. Myeloma cells comprise various subsets arrested in diverse differentiated phases, and the immaturity of myeloma cells has been taken as a marker for poor prognosis, suggesting that differentiation induction would be a promising therapeutic strategy for myeloma. Herein, we used low-dose pharmacological UPR inducers such as tunicamycin (TM) and dithiothreitol (DTT) to efficiently activate the IRE1-XBP-1 pathway in myeloma cells characterized by transcriptional expression increase in spliced XBP-1 and molecular chaperons, accompanied by significant differentiation and maturation of these myeloma cells, without concomitant cytotoxicity. These differentiated myeloma cells exhibited a more mature appearance with well-developed cytoplasm and a reduced nucleocytoplasmic ratio, and a further differentiated phenotype with markedly increased expression of CD49e together with significantly elevated cellular secretion of Ig light chain as shown by flow cytometry and ELISA, in contrast to the control myeloma cells without exposed to TM or DTT. Moreover, siRNA knockdown of XBP-1 disrupted TM- or DTT-induced myeloma cell differentiation and maturation. Our study, for the first time, validated that the modest activation of the UPR pathway enables myeloma cells to further differentiate, and identified that XBP-1 plays an indispensable role in UPR-mediated myeloma cell differentiation and maturation. Thus, we provided the rationale and feasibility for the exploration of the novel therapeutic strategy of differentiation induction for plasmacytic malignancies.
The prognosis of biliary tract cancer (BTC) remains unsatisfactory. This single-arm, phase II clinical trial (ChiCTR2000036652) investigated the efficacy, safety, and predictive biomarkers of sintilimab plus gemcitabine and cisplatin as the first-line treatment for patients with advanced BTCs. The primary endpoint was overall survival (OS). Secondary endpoints included toxicities, progression-free survival (PFS), and objective response rate (ORR); multi-omics biomarkers were assessed as exploratory objective. Thirty patients were enrolled and received treatment, the median OS and PFS were 15.9 months and 5.1 months, the ORR was 36.7%. The most common grade 3 or 4 treatment-related adverse events were thrombocytopenia (33.3%), with no reported deaths nor unexpected safety events. Predefined biomarker analysis indicated that patients with homologous recombination repair pathway gene alterations or loss-of-function mutations in chromatin remodeling genes presented better tumor response and survival outcomes. Furthermore, transcriptome analysis revealed a markedly longer PFS and tumor response were associated with higher expression of a 3-gene effector T cell signature or an 18-gene inflamed T cell signature. Sintilimab plus gemcitabine and cisplatin meets pre-specified endpoints and displays acceptable safety profile, multiomics potential predictive biomarkers are identified and warrant further verification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.