Abstract. The acid deposition has been considered to be a severe environmental issue in China. The pH, electrical conductivity (EC), and concentrations of water soluble ions (NO3-, Cl−, Ca2+, K+, F−, NH4+, Mg2+, SO42-, and Na+) in the precipitation samples collected from 320 cities during 2011–2016 across China were measured. The mean concentrations of F−, NO3-, and SO42- were in the order of winter (6.10, 19.44, and 45.74 µeq L−1) > spring (3.45, 13.83, and 42.61 µeq L−1) > autumn (2.67, 9.73, and 28.85 µeq L−1) > summer (2.04, 7.66, and 19.26 µeq L−1). Secondary ions (SO42-, NO3-, and NH4+) and F− peaked in the Yangtze River Delta (YRD) and Sichuan basin (SB). Crustal ions (i.e. Ca2+, Mg2+), Na+, and Cl− showed the highest concentrations in the semi-arid regions and the coastal cities. The statistical methods confirmed that the mean anthropogenic contribution ratios to SO42-, F−, NO3-, and NH4+ at a national scale were 46.12 %, 71.02 %, 79.10 %, and 82.40 %, respectively. However, Mg2+ (70.51 %), K+ (77.44 %), and Ca2+ (82.17 %) mostly originated from the crustal source. Both Na+ (70.54 %) and Cl− (60.42 %) were closely linked to sea salt aerosols. On the basis of the stepwise regression (SR) analysis, it was proposed that most of the secondary ions and F− were closely related to gross industrial production (GIP), total energy consumption (TEC), vehicle ownership, and N fertilizer use, but the crustal ions (Ca2+ and K+) were mainly controlled by the dust events. The influence of dust days, air temperature, and wind speed on ions increased from southeast China (SEC) to central China, and then to northwest China (NWC), whereas the influence of socioeconomic factors on acid ions (SO42- and NO3-) displayed the higher value in east China.
Humic-like substances (HULIS) are of great interest due to their optical and chemical characteristics. In this study, a total of 180 samples of atmospheric particulate matter (PM) of different sizes were collected from summer 2018 to spring 2019, in order to analyze the size distribution, to investigate the seasonal variation and then to identify the key sources of HULIS. The annual mean concentration of HULIS in the total suspended particulates reached 5.12 ± 1.42 μg/m3. The HULIS concentration was extremely higher in winter (8.35 ± 2.06 μg/m3) than in autumn (4.88 ± 0.95 μg/m3), in summer (3.62 ± 1.68 μg/m3) and in spring (3.36 ± 0.99 μg/m3). The average annual ratio of water-soluble organic carbon (WSOC) to OC and the ratio of HULIS to WSOC reached 0.546 ± 0.092 and 0.56 ± 0.06, respectively. Throughout the whole year, the size distributions of WSOC and HULIS-C were relatively smooth. The peaks of WSOC appeared at 1.8~3.2 μm and 0.56~1.0 μm, while the peaks of HULIS-C were located at 3.2~5.6 μm, 1.0~1.8 μm and 0.18~0.32 μm. The distribution of the HULIS particle mode was similar in spring, summer and autumn, while there was a lower proportion of the coarse mode and a higher proportion of the condensation mode in winter. By using the comprehensive analysis of principal component analysis (PCA), air mass backward trajectories (AMBTs) and fire point maps, key sources of WSOC and HULIS in Shanghai were identified as biomass combustion (48.42%), coal combustion (17.49%), secondary formation (16.07%) and vehicle exhaust (5.37%). The remaining part might be contributed by crustal dust sources, marine sources and/or other possible sources. This study provides new insight into the characteristics and size distribution of HULIS in Shanghai, thereby providing a practical base for further modeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.