Background
RNA modification has become one of the hot topics of research as it can be used for tumor prognosis. However, its role in various biological processes is still poorly understood. The aim of this study was to investigate the role of m5C and m1A regulators on colorectal cancer prognosis using bioinformatics tools. The association between these regulators and differences in patient survival as well as the clinicopathological characteristics and tumor immune microenvironment in colorectal cancer tissues were assessed.
Methods
We selected publicly available colorectal cancer data sets from The Cancer Genome Atlas and used the “limma” package in R to identify differentially expressed genes. The least absolute shrinkage and selection operator regression model was used to calculate the prognostic risk, and a risk prediction model was constructed, to help assess the prognostic values of the differentially expressed genes. Finally, using TISCH and TIMER, we assessed the extent of cellular infiltration in colorectal cancer.
Results
We explored NSUN6 and DNMT3A expression using UALCAN and HPA and found that their expression is significantly increased in colorectal cancer tissues and correlated with sex and TP53 mutation status. Moreover, we found NSUN6 and DNMT3A were related to the infiltration of six major immune cells, with DNMT3A being closely related to dendritic cells, CD4+ T cells, and B cells, whereas NSUN6 to B cells and CD8+ T cells.
Conclusion
Our findings suggest that m5C regulators can predict the clinical prognostic risk and regulate the tumor immune microenvironment in colorectal cancer.
Developing smart hydrogels with integrated and suitable properties to treat intervertebral disc degeneration (IVDD) by minimally invasive injection is of high desire in clinical application and still an ongoing challenge. In this work, an extraordinary injectable hydrogel PBNPs@OBG (Prussian blue nanoparticles@oxidized hyaluronic acid/borax/gelatin) with promising antibacterial, antioxidation, rapid gelation, and self-healing characteristics was designed via dual-dynamic-bond cross-linking among the oxidized hyaluronic acid (OHA), borax, and gelatin. The mechanical performance of the hydrogel was studied by dynamic mechanical analysis. Meanwhile, the swelling ratio and degradation level of the hydrogel was explored. Benefiting from its remarkable mechanical properties, sufficient tissue adhesiveness, and ideal shape-adaptability, the injectable PBNPs containing hydrogel was explored for IVDD therapy. Astoundingly, the as-fabricated hydrogel was able to alleviate H2O2-induced excessive ROS against oxidative stress trauma of nucleus pulposus, which was further revealed by theoretical calculations. Rat IVDD model was next established to estimate therapeutic effect of this PBNPs@OBG hydrogel for IVDD treatment in vivo. On the whole, combination of the smart multifunctional hydrogel and nanotechnology-mediated antioxidant therapy can serve as a fire-new general type of therapeutic strategy for IVDD and other oxidative stress-related diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.