Previous studies have shown that the seismic incidence angle imposes a non-negligible impact on the seismic performance of curved bridges. The computational efficiency of some current methods for determining the critical angle needs to be improved and their applicability in practical engineering projects remains to be examined. For this reason, a resultant response-based (RRB) method is developed herein for assessing the critical excitation direction of curved bridges. To validate the feasibility of this method in an actual seismic design context, a 1/62.5-scale model of a three-span curved bridge is designed and a multi-angle shaking table test is implemented. Meanwhile, the finiteelement model of the test specimen is set up, and the RRB method as well as the linear responsehistory analysis (LRHA) are comparatively assessed. The results indicate that the RRB method can
<p>This study proposes a resultant force-based (RFB) method to directly assess the critical excitation direction of curved bridges. A numerical model for a typical curved bridge is built and multiple factors associated with structural and ground motion characteristics, including horizontal girder curvature, column height and frequency characteristics of ground motions are evaluated to identify the sensitivity of the critical excitation direction to these factors. Results indicate that the RFB method can capture the critical excitation direction of curved bridges with sufficient precision (no more than 2.5% for this study) and minor computational efforts (only requiring 0° and 90° as the incidence angles) compared with the response history analyses at multiple ground motion orientations, which can be easily applied in computing software to guide the seismic design of bridges. Among the factors studied, horizontal girder curvature tends to be the most influential factor affecting the critical excitation direction of curved bridges.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.