Global warming has increased the security risk of permafrost environment in the Tibetan Plateau, which has been threatening infrastructures along the Qinghai–Tibet Engineering Corridor (QTEC). Combined with the traditional risk identification and the causal feedback relationship of system dynamics, the authors present a novel engineering environment risk identification model including five risk subsystems, i.e., regional geomorphology, climate change, ecological environment, permafrost environment and water environment. Our model could successfully identify the interaction relationships and transmission path among risk factors of the environment of the QTEC. The basic data calculation, interaction degree analysis and regional distribution characteristic analysis of the identified risk factors were carried out by using a geographic information system (GIS), a partial correlation analysis and a zoning analysis. The results show that the static factors (i.e., elevation, slope, aspect, relief degree of land surface and volume ice content) mainly affected the spatial distribution of environmental risk factors, while the climate change factors (i.e., mean annual air temperature, mean annual precipitation and surface solar radiation), among the dynamic factors, were the root factors of the dynamic changes in environmental risks. The model identified five types of parallel risk paths in the QTEC. This novel method and proposed model can be used to identify and assess multi-scale engineering environmental risks in the cryosphere.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.