Electric fields have been proposed as having a distinct ability to catalyze chemical reactions through the stabilization of polar or ionic intermediate transition states. Although field-assisted catalysis is being researched, the ability to catalyze reactions in solution using electric fields remains elusive and the understanding of mechanisms of such catalysis is sparse. Here we show that an electric field can catalyze the cis-to-trans isomerization of [3]cumulene derivatives in solution, in a scanning tunneling microscope. We further show that the external electric field can alter the thermodynamics inhibiting the trans-to-cis reverse reaction, endowing the selectivity toward trans isomer. Using density functional theory-based calculations, we find that the applied electric field promotes a zwitterionic resonance form, which ensures a lower energy transition state for the isomerization reaction. The field also stabilizes the trans form, relative to the cis, dictating the cis/trans thermodynamics, driving the equilibrium product exclusively toward the trans.
The solid‐state packing and polymer orientation relative to the substrate are key properties to control in order to achieve high charge carrier mobilities in organic field effect transistors (OFET). Intuitively, shorter side chains are expected to yield higher charge carrier mobilities because of a denser solid state packing motif and a higher ratio of charge transport moieties. However our findings suggest that the polymer chain orientation plays a crucial role in high‐performing diketopyrrolopyrrole‐based polymers. By synthesizing a series of DPP‐based polymers with different branched alkyl side chain lengths, it is shown that the polymer orientation depends on the branched alkyl chain lengths and that the highest carrier mobilities are obtained only if the polymer adopts a mixed face‐on/edge‐on orientation, which allows the formation of 3D carrier channels in an otherwise edge‐on‐oriented polymer chain network. Time‐of‐flight measurements performed on the various polymer films support this hypothesis by showing higher out‐of‐plane carrier mobilities for the partially face‐on‐oriented polymers. Additionally, a favorable morphology is mimicked by blending a face‐on polymer into an exclusively edge‐on oriented polymer, resulting in higher charge carrier mobilities and opening up a new avenue for the fabrication of high performing OFET devices.
One-dimensional sp-hybridized carbon wires, including cumulenes and polyynes, can be regarded as finite versions of carbynes. They are likely to be good candidates for molecular-scale conducting wires as they are predicted to have a high-conductance. In this study, we first characterize the singlemolecule conductance of a series of cumulenes and polyynes with a backbone ranging in length from 4 to 8 carbon atoms, including [7]cumulene, the longest cumulenic carbon wire studied to date for molecular electronics. We observe different length dependence of conductance when comparing these two forms of carbon wires. Polyynes exhibit conductance decays with increasing molecular length, while cumulenes show a conductance increase with increasing molecular length. Their distinct conducting behaviors are attributed to their different bond length alternation, which is supported by theoretical calculations. This study confirms the long-standing theoretical predictions on sp-hybridized carbon wires and demonstrates that cumulenes can form highly conducting molecular wires.
There may be differences between this version and the published version. You are advised to consult the publisher's version if you wish to cite from it.
We demonstrate that imidazole based π–π stacked dimers form strong and efficient conductance pathways in single-molecule junctions using the scanning-tunneling microscope-break junction (STM-BJ) technique and density functional theory-based calculations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.