The genetic heterogeneities in cancer cells pose challenges to achieving precise drug treatment in a widely applicable manner. Most single-cell gene analysis methods rely on cell lysis for gene extraction and identification, showing limited capacity to provide the correlation of genetic properties and realtime cellular behaviors. Here, we report a single living cell analysis nanoplatform that enables interrogating gene properties and drug resistance in millions of single cells. We designed a Domino-probe to identify intracellular target RNAs while releasing 10-fold amplified fluorescence signals. An on-chip addressable microwellnanopore array was developed for enhanced electro-delivery of the Domino-probe and in situ observation of cell behaviors. The proofof-concept of the system was validated in primary lung cancer cell samples, revealing the positive-correlation of the ratio of EGFR mutant cells with their drug susceptibilities. This platform provides a high-throughput yet precise tool for exploring the relationship between intracellular genes and cell behaviors at the single-cell level.
This article reports a highly integrated watch for noninvasive continual blood glucose monitoring. The watch employs a Nafion-coated flexible electrochemical sensor patch fixed on the watchband to obtain interstitial fluid (ISF) transdermally at the wrist. This reverse iontophoresis-based extraction method eliminates the pain and inconvenience that traditional fingerstick blood tests pose in diabetic patients’ lives, making continual blood glucose monitoring practical and easy. All electronic modules, including a rechargeable power source and other modules for signal processing and wireless transmission, are integrated onto a watch face-sized printed circuit board (PCB), enabling comfortable wearing of this continual glucose monitor. Real-time blood glucose levels are displayed on the LED screen of the watch and can also be checked with the smartphone user interface. With 23 volunteers, the watch demonstrated 84.34% clinical accuracy in the Clarke error grid analysis (zones A + B). In the near future, commercial products could be developed based on this lab-made prototype to provide the public with noninvasive continual glucose monitoring.
The organic electrochemical transistor (OECT) is one of the most versatile building blocks within the bioelectronics device toolbox. While p‐type organic semiconductors have progressed as OECT channel materials, only a few n‐type semiconductors have been reported, precluding the development of advanced sensor‐integrated OECT‐based complementary circuits. Herein, green aldol polymerization is uses to synthesize lactone‐based n‐type conjugated polymers. Fluorination of the lactone‐based acceptor endows a fully locked backbone with a low‐lying lowest unoccupied molecular orbital, facilitating efficient ionic‐to‐electronic charge coupling. The resulting polymer has a record‐high n‐type OECT performance with a high product of mobility and capacitance (µC* = 108 F cm−1 V−1 s−1), excellent mobility (0.912 cm2 V−1 s−1), low threshold voltage (0.02 V), and fast switching speed (τON, τOFF = 336 µs,108 µs). This work demonstrates two types of device architectures and applications enabled by the high performance of this n‐type OECT, i.e., an artificial synapse and a complementary amplifier for detecting α‐synuclein, a potential biomarker of Parkinson's disease. This study shows that materials that enable high gain and fast speed n‐type OECTs can be developed via a green polymerization route, and the diverse form factors that these devices take promise for exploration of other application areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.