By thermal decomposition in the presence only of oleylamine, sub-10 nm hexagonal NaLuF(4)-based nanocrystals codoped with Gd(3+), Yb(3+), and Er(3+) (or Tm(3+)) have been successfully synthesized. Sub-10 nm β-NaLuF(4): 24 mol % Gd(3+), 20 mol % Yb(3+), 1 mol % Tm(3+) nanocrystals display bright upconversion luminescence (UCL) with a quantum yield of 0.47 ± 0.06% under continuous-wave excitation at 980 nm. Furthermore, through the use of β-NaLuF(4):Gd(3+),Yb(3+),Tm(3+) nanocrystals as a luminescent label, the detection limit of <50 nanocrystal-labeled cells was achieved for whole-body photoluminescent imaging of a small animal (mouse), and high-contrast UCL imaging of a whole-body black mouse with a penetration depth of ~2 cm was achieved.
Water-soluble upconversion luminescent (UCL) nanoparticles based on triplet-triplet annihilation (TTA) were successfully prepared by coloading sensitizer (octaethylporphyrin Pd complex) and annihilator (9,10-diphenylanthracene) into silica nanoparticles. The upconversion luminescence quantum yield of the nanoparticles can be as high as 4.5% in aqueous solution. As determined by continuous kinetic scan, the nanoparticles have excellent photostability. Such TTA-based upconversion nanoparticles show low cytotoxicity and were successfully used to label living cells with very high signal-to-noise ratio. UCL imaging with the nanoparticles as probe is capable of completely eliminating background fluorescence from either endogenous fluorophores of biological sample or the colabeled fluorescent probe. In particular, such blue-emissive upconversion nanoparticles were successfully applied in lymph node imaging in vivo of living mouse with excellent signal-to-noise ratio (>25), upon low-power density excitation of continuous-wave 532 laser (8.5 mW cm(-2)). Such high-contrast and low-power excited bioimaging in vivo with a blue-emissive upconversion nanoparticle as probe may extend the arsenal of currently available luminescent bioimaging in vitro and in vivo.
A general strategy for constructing high-effective upconversion nanocapsules based on triplet-triplet annihilation (TTA) was developed by loading both sensitizer and annihilator into BSA-dextran stabilized oil droplets. This strategy can maintain high translational mobility of the chromophores, avoid luminescence quenching of chromophore by aggregation, and decrease the O2-induced quenching of TTA-based upconversion emission. Pt(II)-tetraphenyl-tetrabenzoporphyrin (PtTPBP) and BODIPY dyes (BDP-G and BDP-Y with the maximal fluorescence emission at 528 and 546 nm, respectively) were chosen as sensitizer/annihilator couples to fabricate green and yellow upconversion luminescent emissive nanocapsules, named UCNC-G and UCNC-Y, respectively. In water under the atmospheric environment, interestingly, UCNC-G and UCNC-Y exhibit intense upconversion luminescence (UCL) emission (λex = 635 nm) with the quantum efficiencies (ΦUCL) of 1.7% and 4.8%, respectively, whereas very weak UCL emission (ΦUCL < 0.1%) was observed for the corresponding previous reported SiO2-coating nanosystems because of aggregation-induced fluorescence quenching of annihilators. Furthermore, application of theses upconversion nanocapsules for high-contrast UCL bioimaging in vivo of living mice without removing the skin was demonstrated under 635-nm excitation with low power density of 12.5 mW cm(-2).
A novel method of rare-earth cation-assisted ligand assembly has been developed to provide upconversion nanophosphors with T(1)-enhanced magnetic resonance (MR), radioactivity, and targeted recognition properties, making these nanoparticles potential candidates for multimodal bioimaging. The process of modifying the surface of the nanophosphors has been confirmed by transmission electron microscopy, X-ray powder diffraction, X-ray photoelectron spectroscopy, proton nuclear magnetic resonance, Fourier-transform infrared spectroscopy, energy-dispersive X-ray analysis, and so on. The versatility of this surface modification approach for incorporating functional molecules and fabricating fluorine-18-labeled magnetic-upconversion nanophosphors as multimodal bioprobes has been demonstrated by targeted cell imaging, in vivo upconversion luminescence, MR imaging, and positron emission tomography imaging of whole-body small animals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.