Replacement of flammable organic liquid electrolytes with solid Li conductors is a promising approach to realize excellent performance of Li metal batteries. However, ceramic electrolytes are either easily reduced by Li metal or penetrated by Li dendrites through their grain boundaries, and polymer electrolytes are also faced with instability on the electrode/electrolyte interface and weak mechanical property. Here, we report a three-dimensional fiber-network-reinforced bicontinuous solid composite electrolyte with flexible Li-conductive network (lithium aluminum titanium phosphate (LATP)/polyacrylonitrile), which helps to enhance electrochemical stability on the electrode/electrolyte interface by isolating Li and LATP and suppress Li dendrites growth by mechanical reinforcement of fiber network for the composite solid electrolyte. The composite electrolyte shows an excellent electrochemical stability after 15 days of contact with Li metal and has an enlarged tensile strength (10.72 MPa) compared to the pure poly(ethylene oxide)-bistrifluoromethanesulfonimide lithium salt electrolyte, leading to a long-term stability and safety of the Li symmetric battery with a current density of 0.3 mA cm for 400 h. In addition, the composite electrolyte also shows good electrochemical and thermal stability. These results provide such fiber-reinforced membranes that present stable electrode/electrolyte interface and suppress lithium dendrite growth for high-safety all-solid-state Li metal batteries.
We present a new way to make Ising machines, i.e., using networks of coupled self-sustaining nonlinear oscillators. Our scheme is theoretically rooted in a novel result that establishes that the phase dynamics of coupled oscillator systems, under the influence of subharmonic injection locking, are governed by a Lyapunov function that is closely related to the Ising Hamiltonian of the coupling graph. As a result, the dynamics of such oscillator networks evolve naturally to local minima of the Lyapunov function. Two simple additional steps (i.e., adding noise, and turning sub-harmonic locking on and off smoothly) enable the network to find excellent solutions of Ising problems. We demonstrate our method on Ising versions of the MAX-CUT and graph colouring problems, showing that it improves on previously published results on several problems in the G benchmark set. Our scheme, which is amenable to realisation using many kinds of oscillators from different physical domains, is particularly well suited for CMOS IC implementation, offering significant practical advantages over previous techniques for making Ising machines. We present working hardware prototypes using CMOS electronic oscillators.
Self-supported Ni3S2 ultrathin nanosheets were in situ formed by direct sulfurization of commercially available nickel foam using thioacetamide as sulfur source under hydrothermal process. The morphology and structure of the as-obtained sample were analyzed by using XRD, XPS, SEM, and TEM, revealing that an ultrathin nanosheets Ni3S2 were grown on the surface of Ni form. The as-obtained Ni3S2/Ni composite with uniform architecture was used as cathode material for alkaline Ni/Zn battery, which delivered high capacity of 125 mAh g(-1) after 100 cycles with no obvious capacity fading, extraordinary rate capability (68 mAh g(-1) at the current density of 5.0 A g(-1)), and high operating voltage (1.75 V).
Highlights d Sirt3 SUMOylation suppresses its catalytic activity in mitochondria d Fasting induces SENP1 translocation into mitochondria to de-SUMOylate Sirt3 d The SENP1-Sirt3 axis promotes fatty acid oxidation and energy production d Sirt3 SUMOylation mutation antagonizes HFD-induced obesity via energy expenditure
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.