Coding metamaterials have offered unprecedented degrees of freedom to manipulate electromagnetic waves in time and frequency domains in terms of various coding sequences, however, it is still challenging to realize dynamic coding metamaterials in the terahertz range. Here, we propose VO2-enabled transmission-reflection switchable coding terahertz metamaterials consisting of multilayered gold and VO2 patterns. The insulator-to-metal transition of VO2 leads to switch between the refractive and reflective scattering beams by changing the temperature. The four 2-bit elements are used to construct coding metasurface-based OAM generator with l = 1. Remarkably, the transmission-reflection switching functionality of the coding metasurface can be achieved at different frequencies. In addition, the novel designs in our work can achieve EM waves manipulation and provide a useful method to dynamically switch transmission-reflection response in the THz frequency regime.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.