Chickpea starch was modified by heat-moisture treatment (HMT). The effect of heat-moisture treatment on the amylose content of chickpea starch was studied, and the physicochemical properties, gelatinization properties, texture properties and digestion properties of modified chickpea starch were compared and analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared (FT-IR). After HMT, the amylose content of chickpea starch increased. Compared with the natural starch, the morphology of starch granule was changed and destroyed under the condition of higher water content (30%). It was found that the crystalline morphology had no obvious change, and the structure was still C-type. In FT-IR spectra, the position of characteristic absorption peak had no obvious change, and the internal structure and main components of chickpea starch had no obvious change. The solubility, swelling power, transparency, freeze-thaw stability and gelation ability of chickpea starch treated with HMT decreased, while the thermal stability increased and the anti-digestibility enhanced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.