To understand the mechanism of tolerance of lactic acid bacteria (LAB) during cold storage of fermented milk, 31 LAB strains were isolated from traditional fermented products, and Lactiplantibacillus plantarum NMGL2 was identified with good tolerance to both cold and acid stresses. Data-independent acquisition proteomics method was employed to analyze the response of Lpb. plantarum NMGL2 to the combinational cold and acid stresses during storage of the fermented milk made with the strain at 4 °C for 21 days. Among the differentially expressed proteins identified, 20 low temperature-resistant proteins and 10 acid-resistant proteins were found. Protein interaction analysis showed that the low temperature-resistant proteins associated with acid-resistant proteins were Hsp1, Hsp2, Hsp3, CspC, MurA1, MurC, MurD, MurE1, and MurI, while the acid-resistant proteins associated with low temperature-resistant proteins were DnaA, DnaK, GrpE, GroEL, and RbfA. The overall metabolic pathways of Lpb. plantarum NMGL2 in response to the stresses were determined including increased cell wall component biosynthesis, extracellular production of abundant glycolipids and glycoproteins, increased expression of F1Fo-ATPase, activation of glutamate deacidification system, enhanced expression of proteins and chaperones associated with cell repairing caused by the acidic and cold environment into the correct proteins. The present study for the first time provides further understanding of the proteomic pattern and metabolic changes of Lpb. plantarum in response to combinational cold and acid stresses in fermented milk, which facilitates potential application of Lpb. plantarum in fermented foods with enhanced survivability.
There has been an increased application of exopolysaccharide (EPS)-producing lactic acid bacteria (LAB) in fermented dairy products, but interactions between EPS and casein (CAS), and bioactivities of their complex are poorly studied. In this study, EPS produced by Lactobacillus plantarum YW11 (EPS-YW11) was studied for interactions with CAS in a simulated fermentation system acidified by D-(+)-gluconic acid δ-lactone. The results showed that there was interaction between EPS-YW11 and CAS when EPS (up to 1%, w/v) was added to the casein solution (3%, w/v) as observed with increased viscoelasticity, water holding capacity, ζ-potential and particle size of EPS-YW11/CAS complex compared with CAS alone. Microstructural analysis showed that a higher concentration of EPS facilitated more even distribution of CAS particles that were connected through the polysaccharide chains. Infrared spectroscopy further confirmed interactions between EPS and CAS by intermolecular hydrogen bonding, electrostatic and hydrophobic contacts. Further evaluation of the bioactivities of EPS-YW11/CAS complex revealed significantly increased antibiofilm, antioxidation, and bile acids binding capacity. The present study provides further understanding on the mechanism of interactions between EPS produced by LAB and CAS, which would benefit potential applications of EPS in fermented dairy products with enhanced functionality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.