Metal−organic frameworks (MOFs) are crystalline materials comprising metal centers and organic linkers that feature structural rigidity and functional flexibility. These attractive materials offer large surface areas, high porosity, and good chemical stability; they have shown promise in chemistry (H 2 separation and catalysis), magnetism, and optics. They have also shown potential for drug delivery following the demonstration in 2006 that chromium-based MOFs can be loaded with ibuprofen. Since then, iron-based MOFs (Fe-MOFs) have been shown to offer high drug loading and excellent biocompatibility. The present review focuses on the synthesis and surface modifications of Fe-MOFs as well as their applications in drug delivery and biomedicine.
Macrophages have been extensively used in the development of drug delivery systems, as they can prolong the circulation and release of drugs, extend their half-life, increase their stability and targeting ability, and reduce immunogenicity. Moreover, they have good biocompatibility and degradability and offer abundant surface receptors for targeted delivery of a wide variety of drugs. Macrophage-mediated drug delivery systems can be prepared by loading drugs or drug-loaded nanoparticles into macrophages, macrophage membranes or macrophage-derived vesicles. Although such systems can be used to treat inflammation, cancer, HIV infection and other diseases, they require further research and optimization since they have been assembled from diverse sources and therefore can have quite different physical and chemical properties. Moreover, potential cell-drug interactions can limit their application, and the biological activity of membrane proteins might be lost during membrane extraction and storage. In this review, we summarize the recent advances in this field and discuss the preparation of macrophage-mediated drug delivery systems, their advantages over other delivery systems, their potential applications and future lines of research.
An elastic and safe electrolyte is demanded for flexible batteries. Herein, a stretchable solid electrolyte comprised of crosslinked elastic polymer matrix, poly(vinylidene fluoride‐hexafluoropropylene) (PVDF‐HFP), and flameproof triethyl phosphate (TEP) is fabricated, which exhibits ultrahigh elongation of 450%, nonflammability and ionic conductivity above 1 mS cm−1. In addition, in order to improve the interface compatibility between the electrolyte and Li anode and stabilize the solid‐electrolyte interphase (SEI), a protecting layer containing poly(ethylene oxide) (PEO) is designed to effectively prevent the anode from reacting with TEP and optimize the chemical composition in SEI, leading to a tougher and more stable SEI on the anode. The LiFePO4/Li cells employing this double‐layer electrolyte exhibit an 85.0% capacity retention after 300 cycles at 1 C. Moreover, a flexible battery based on this solid electrolyte is fabricated, which can work in stretched, folded, and twisted conditions. This design of a stretchable double‐layer solid electrolyte provides a new concept for safe and flexible solid‐state batteries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.