ObjectiveIt remains unclear if and how the interactions between APOE genotypes and cerebral small-vessel diseases (CSVD) lead to cognitive decline in the long term. Based on ADNI cohort, this longitudinal study aimed to clarify the potential relationship among APOE genotype, CSVD and cognition by integrating multi-level data.MethodThere were 135 healthy elderly (including ε2, ε4 allele carriers and ε3 homozygotes) who had completed two years’ follow-up. MRI markers of CSVD, including white matter hyperintensities (WMH), dilated perivascular space (dPVS), microbleeds and lacune, were assessed. Besides, neuropathological factors including Alzheimer's disease-related pathology measured by CSF and PiB-PET were assessed. Repeated measurements ANOVAs were performed to test impact of different APOE genotypes on CSVD.ResultsWe found that APOE ε4 carriers had significantly more frontal WMH burden and basal ganglia dPVS at baseline and faster progression of frontal WMH burden during follow-up. Furthermore, our results showed that APOE ε4 carriers had significantly decreased Aβ1-42 level, and its level was negatively related with baseline and progressive total WMH burden. Then, general linear modals indicated interaction between basal frontal WMH burden and ε4 allele was related with declining trend of cognition.ConclusionOur findings suggested APOE ε4 allele was associated with increased Aβ deposition, which may lead to the formation and progression of WMH, especially in frontal lobe. Besides, interaction between the increased frontal WMH burden and ε4 allele can exert long-term detrimental effects on individual's trajectory of cognition.
Mild cognitive impairment (MCI) is a heterogeneous condition associated with a high risk of progressing to Alzheimer's disease (AD). Although functional brain network alterations have been observed in progressive MCI (pMCI), the underlying pathological mechanisms of network alterations remain unclear. In the present study, we evaluated neuropsychological, imaging, and cerebrospinal fluid (CSF) data at baseline across a cohort of: 21 pMCI patients, 33 stable MCI (sMCI) patients, and 29 normal controls. Fast eigenvector centrality mapping (fECM) based on resting-state functional MRI (rsfMRI) was used to investigate brain network organization differences among these groups, and we further assessed its relation to cognition and AD-related pathology. Our results demonstrated that pMCI had decreased eigenvector centrality (EC) in left temporal pole and parahippocampal gyrus, and increased EC in left middle frontal gyrus compared to sMCI. In addition, compared to normal controls, patients with pMCI showed decreased EC in right hippocampus and bilateral parahippocampal gyrus, and sMCI had decreased EC in right middle frontal gyrus and superior parietal lobule. Correlation analysis showed that EC in the left temporal pole was related to Wechsler Memory Scale-Revised Logical Memory (WMS-LM) delay score (r = 0.467, p = 0.044) and total tau (t-tau) level in CSF (r = -0.509, p = 0.026) in pMCI. Our findings implicate EC changes of different brain network nodes in the prognosis of pMCI and sMCI. Importantly, the association between decreased EC of brain network node and pathological changes may provide a deeper understanding of the underlying pathophysiology of pMCI.
Amnestic mild cognitive impairment can be further classified as single-domain aMCI (SD-aMCI) with isolated memory deficit, or multi-domain aMCI (MD-aMCI) if memory deficit is combined with impairment in other cognitive domains. Prior studies reported these clinical subtypes presumably differ in etiology. Thus, we aimed to explore the possible mechanisms between different aMCI subtypes by assessing alteration in brain activity and brain vasculature, and their relations with CSF AD biomarkers. 49 healthy controls, 32 SD-aMCI, and 32 MD-aMCI, who had undergone structural scans, resting-state functional MRI (rsfMRI) scans and neuropsychological evaluations, were identified. Regional homogeneity (ReHo) was employed to analyze regional synchronization. Periventricular white matter hyperintensities (PWMH) and deep WMH (DWMH) volume of each participant was quantitatively assessed. AD biomarkers from CSF were also measured. SD-aMCI showed decreased ReHo in medial temporal gyrus (MTG), and increased ReHo in lingual gyrus (LG) and superior temporal gyrus (STG) relative to controls. MD-aMCI showed decreased ReHo, mostly located in precuneus (PCu), LG and postcentral gyrus (PCG), relative to SD-aMCI and controls. As for microvascular disease, MD-aMCI patients had more PWMH burden than SD-aMCI and controls. Correlation analyses indicated mean ReHo in differenced regions were related with memory, language, and executive function in aMCI patients. However, no significant associations between PWMH and behavioral data were found. The Aβ level was related with the ReHo value of STG in SD-aMCI. MD-aMCI displayed different patterns of abnormal regional synchronization and more severe PWMH burden compared with SD-aMCI. Therefore aMCI is not a uniform disease entity, and MD-aMCI group may show more complicated pathologies than SD-aMCI group.
Apolipoprotein E (APOE) ε4 allele is the best established genetic risk factor for sporadic Alzheimer's disease (AD). However, there is a need to understand the effects of this genotype on the brain by simultaneously assessing intrinsic brain network and cerebral spinal fluid (CSF) biomarkers changes in healthy older ε4 carriers. Thirteen cognitively intact, elderly APOE ε4 carriers and 22 ε3 homozygotes were included in the present study. Eigenvector centrality mapping (ECM) was used to identify brain network hub organization based on resting-state functional MRI (rsfMRI). We evaluated comprehensive cognitive ability and tested levels of Aβ, total-tau (t-tau) and phosphorylated-tau (p-tau) in CSF. Comparisons of ECM between two groups were conducted, followed by correlations analyses between EC values with significant group differences and cognitive ability/CSF biomarkers. APOE ε4 carriers showed significantly decreased EC values in left medial temporal lobe (MTL), left lingual gyrus (LG) and increased EC values in left middle frontal gyrus (MFG) as compared to non-carriers. Correlation analysis demonstrated that left LG EC value correlated with Rey Auditory Verbal Learning Test total learning (RAVLT, r = 0.57, p < 0.05) and t-tau level (r = -0.57, p < 0.05), while left MFG EC values correlated with log-transformed Trail-Making Test B (TMT-B, r = -0.67, p < 0.05) in APOE ε4 carriers. This study suggests the APOE ε4 allele contributes to disruption of brain connectedness in certain functional nodes, which may result from neuronal death caused by toxicity of neurofibrillary tangles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.