There is a large gap between the simulated and observed sulfate concentrations during winter haze events in North China. Although multiphase sulfate formation mechanisms have been proposed, they have not been evaluated using chemical transport models. In this study, the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) was used to apportion sulfate formation. It was found that Mncatalyzed oxidation on aerosol surfaces was the dominant sulfate formation pathway, accounting for 92.3 ± 3.5% of the sulfate formation during haze events. Gas-phase oxidation contributed 3.1 ± 0.5% to the sulfate formation due to the low OH levels. The H 2 O 2 oxidation in aerosol water accounted for 4.2 ± 3.6% of the sulfate formation, caused by the rapid consumption of H 2 O 2 . The contributions of O 3 , NO 2 oxidation, and transition metal ion-catalyzed reactions in aerosol water could be negligible owing to the low aerosol water content, low pH, and high ionic strength. The contributions from in-cloud reactions were negligible due to the barrier provided by stable stratification during winter haze events.
Terrestrial ecosystems in China receive the world’s largest amount of reactive nitrogen (N) deposition. Recent controls on nitrogen oxides (NOx = NO + NO2) emissions in China to tackle air pollution are expected to decrease N deposition, yet the observed N deposition fluxes remain almost stagnant. Here we show that the effectiveness of NOx emission controls for reducing oxidized N (NOy = NOx + its oxidation products) deposition is unforeseen in Eastern China, with one-unit reduction in NOx emission leading to only 55‒76% reductions in NOy-N deposition, as opposed to the high effectiveness (around 100%) in both Southern China and the United States. Using an atmospheric chemical transport model, we demonstrate that this unexpected weakened response of N deposition is attributable to the enhanced atmospheric oxidizing capacity by NOx emissions reductions. The decline in N deposition could bear a penalty on terrestrial carbon sinks and should be taken into account when developing pathways for China’s carbon neutrality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.