Cellular RNA dynamics are closely associated with a vast range of physiological processes that are mostly long-lasting. To uncover the association between RNA dynamics and these processes, fluorescent RNA probes with high specificity, photostability, and biocompatibility are compulsory. Herein, a series of fluorescent carbon dots (CDs) have been prepared by one-pot hydrothermal treatment of o-, m-, or p-phenylenediamines with triethylenetetramine. Only CDs derived from the meta precursor ( m-CDs) with excellent photostability and biocompatibility can specifically bind to cellular RNA, allowing successfully long-term (up to 3 days) monitoring of RNA dynamics during cell apoptosis, mitosis, and proliferation. This RNA affinity can be attributed to the isoquinoline moieties and amines on the surface of m-CDs, which can bind to RNA through π-π stacking and electrostatic bonding, respectively. The cellular internalization of m-CDs is time-, temperature-, ATP-, caveolar, and microtubule-dependent. Additionally, investigations on the in vivo behavior of m-CD suggest that they can be efficiently and rapidly excreted from the zebrafish larvae body after 48 h. Our results provide a powerful tool for clarifying complex relationships between RNA dynamics and basic biological processes, disease development, or drug interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.