Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) relies on the central molecular machine RNA-dependent RNA polymerase (RdRp) for the viral replication and transcription. Remdesivir at the template strand has been shown to effectively inhibit the RNA synthesis in SARS-CoV-2 RdRp by deactivating not only the complementary UTP incorporation but also the next nucleotide addition. How-ever, the underlying molecular mechanism of the second inhibitory point remains unclear. In this work, we have performed molecular dynamics simulations and demonstrated that such inhibition has not directly acted on the nucleotide addition at the active site. Instead, the translocation of Remdesivir from + 1 to − 1 site is hindered thermodynamically as the post-translocation state is less stable than the pre-translocation state due to the motif B residue G683. Moreover, another conserved residue S682 on motif B further hinders the dynamic translocation of Remdesivir due to the steric clash with the 1′-cyano substitution. Overall, our study has unveiled an alternative role of motif B in mediating the translocation when Remdesivir is present in the template strand and complemented our understanding about the inhibitory mechanisms exerted by Remdesivir on the RNA synthesis in SARS-CoV-2 RdRp.
Antibody leads must fulfill multiple desirable properties to be clinical candidates. Primarily due to the low throughput in the experimental procedure, the need for such multi-property optimization causes the bottleneck in preclinical antibody discovery and development, because addressing one issue usually causes another. We developed a reinforcement learning (RL) method, named AB-Gen, for antibody library design using a generative pre-trained transformer (GPT) as the policy network of the RL agent. We showed that this model can learn the antibody space of heavy chain complementarity determining region 3 (CDRH3) and generate sequences with similar property distributions. Besides, when using human epidermal growth factor receptor-2 (HER2) as the target, the agent model of AB-Gen was able to generate novel CDRH3 sequences that fulfill multi-property constraints. Totally, 509 generated sequences were able to pass all property filters, and three highly conserved residues were identified. The importance of these residues was further demonstrated by molecular dynamics simulations, consolidating that the agent model was capable of grasping important information in this complex optimization task. Overall, the AB-Gen method is able to design novel antibody sequences with an improved success rate than the traditional propose-then-filter approach. It has the potential to be used in practical antibody design, thus empowering the antibody discovery and development process. The source code of AB-Gen is freely available at Zenodo (https://doi.org/10.5281/zenodo.7657016) and BioCode (https://ngdc.cncb.ac.cn/biocode/tools/BT007341).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.