Metal nanoclusters (NCs) have recently attracted great interest in biomedical applications due to their ultrasmall size, good biocompatibility, and unique molecule-like physical and chemical properties. Metal NCs can be rationally designed and integrated with various targeting moieties to achieve unique physicochemical properties and functions. For therapeutic applications, these multifunctional surface-modified NCs can provide distinctive advantages over native metal NCs, such as improved therapeutic effects and reduced side effects. In this review, the design principles of targeting strategies for metal NCs and their composites, including passive and active targeting, and physical and chemical targeting are first discussed. The authors then focus on the recent achievements in the application of metal NCs in targeted therapeutics, including chemotherapy, phototherapy, and radiotherapy. Finally, the authors' perspectives on the challenges and opportunities of developing metal NCs in targeted therapeutics, further paving their way for potential clinical applications are provided.
Construction of advanced electromagnetic interference (EMI) shielding materials with miniaturized, programmable structure and low reflection are promising but challenging. Herein, an integrated transition-metal carbides/carbon nanotube/polyimide (gradient-conductive MXene/CNT/PI, GCMCP) aerogel frame with hierarchical porous structure and gradient-conductivity has been constructed to achieve EMI shielding with ultra-low reflection. The gradient-conductive structures are obtained by continuous 3D printing of MXene/CNT/poly (amic acid) inks with different CNT contents, where the slightly conductive top layer serves as EM absorption layer and the highly conductive bottom layer as reflection layer. In addition, the hierarchical porous structure could extend the EM dissipation path and dissipate EM by multiple reflections. Consequently, the GCMCP aerogel frames exhibit an excellent average EMI shielding efficiency (68.2 dB) and low reflection (R = 0.23). Furthermore, the GCMCP aerogel frames with miniaturized and programmable structures can be used as EMI shielding gaskets and effectively block wireless power transmission, which shows a prosperous application prospect in defense industry and aerospace.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.