Human angiotensin‐converting enzyme 2 (ACE2) facilitates cellular entry of severe acute respiratory syndrome coronavirus (SARS‐CoV) and SARS‐CoV‐2 as their common receptor. During infection, ACE2‐expressing tissues become direct targets, resulting in serious pathological changes and progressive multiple organ failure or even death in severe cases. However, as an essential component of renin‐angiotensin system (RAS), ACE2 confers protective effects in physiological circumstance, including maintaining cardiovascular homeostasis, fluid, and electrolyte balance. The absence of protective role of ACE2 leads to dysregulated RAS and thus acute changes under multiple pathological scenarios including SARS. This potentially shared mechanism may also be the molecular explanation for pathogenesis driven by SARS‐CoV‐2. We reasonably speculate several potential directions of clinical management including host‐directed therapies aiming to restore dysregulated RAS caused by ACE2 deficiency. Enriched knowledge of ACE2 learned from SARS and COVID‐19 outbreaks can provide, despite their inherent tragedy, informative clues for emerging pandemic preparedness.
BNIP3 is an atypical BH3-only member of the Bcl-2 family with pro-death, pro-autophagic, and cytoprotective functions, depending on the type of stress and cellular context. Recently, we demonstrated that BNIP3 stimulates the migration of epidermal keratinocytes under hypoxia. In the present study found that autophagy and BNIP3 expression were concomitantly elevated in the migrating epidermis during wound healing in a hypoxia-dependent manner. Inhibition of autophagy through lysosome-specific chemicals (CQ and BafA1) or Atg5-targeted small-interfering RNAs greatly attenuated the hypoxia-induced cell migration, and knockdown of BNIP3 in keratinocytes significantly suppressed hypoxia-induced autophagy activation and cell migration, suggesting a positive role of BNIP3-induced autophagy in keratinocyte migration. Furthermore, these results indicated that the accumulation of reactive oxygen species (ROS) by hypoxia triggered the activation of p38 and JNK mitogen-activated protein kinase (MAPK) in human immortalized keratinocyte HaCaT cells. In turn, activated p38 and JNK MAPK mediated the activation of BNIP3-induced autophagy and the enhancement of keratinocyte migration. These data revealed a previously unknown mechanism that BNIP3-induced autophagy occurs through hypoxia-induced ROS-mediated p38 and JNK MAPK activation and supports the migration of epidermal keratinocytes during wound healing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.