Exosomes are a subset of extracellular vesicles that carry specific combinations of proteins, nucleic acids, metabolites, and lipids. Mounting evidence suggests that exosomes participate in intercellular communication and act as important molecular vehicles in the regulation of numerous physiological and pathological processes, including cancer development. Exosomes are released by various cell types under both normal and pathological conditions, and they can be found in multiple bodily fluids. Moreover, exosomes carrying a wide variety of important macromolecules provide a window into altered cellular or tissue states. Their presence in biological fluids renders them an attractive, minimally invasive approach for liquid biopsies with potential biomarkers for cancer diagnosis, prediction, and surveillance. Due to their biocompatibility and low immunogenicity and cytotoxicity, exosomes have potential clinical applications in the development of innovative therapeutic approaches. Here, we summarize recent advances in various technologies for exosome isolation for cancer research. We outline the functions of exosomes in regulating tumor metastasis, drug resistance, and immune modulation in the context of cancer development. Finally, we discuss prospects and challenges for the clinical development of exosome-based liquid biopsies and therapeutics.
Dysregulated lipid metabolism represents an important metabolic alteration in cancer. Fatty acids, cholesterol, and phospholipid are the three most prevalent lipids that act as energy producers, signaling molecules, and source material for the biogenesis of cell membranes. The enhanced synthesis, storage, and uptake of lipids contribute to cancer progression. The rewiring of lipid metabolism in cancer has been linked to the activation of oncogenic signaling pathways and cross talk with the tumor microenvironment. The resulting activity favors the survival and proliferation of tumor cells in the harsh conditions within the tumor. Lipid metabolism also plays a vital role in tumor immunogenicity via effects on the function of the noncancer cells within the tumor microenvironment, especially immune‐associated cells. Targeting altered lipid metabolism pathways has shown potential as a promising anticancer therapy. Here, we review recent evidence implicating the contribution of lipid metabolic reprogramming in cancer to cancer progression, and discuss the molecular mechanisms underlying lipid metabolism rewiring in cancer, and potential therapeutic strategies directed toward lipid metabolism in cancer. This review sheds new light to fully understanding of the role of lipid metabolic reprogramming in the context of cancer and provides valuable clues on therapeutic strategies targeting lipid metabolism in cancer.
Antidiabetic medication may modify the incidence of hepatocellular carcinoma (HCC). We aimed to compare the use of different antidiabetic strategies and the incidence of HCC. PubMed, Embase.com and Cochrane Library databases were searched up to 31 October 2015 and randomized controlled trials (RCTs), cohort studies or case-control studies were included for our analyses. A total of thirteen studies enrolling 481358 participants with 240678 HCC cases who received at least two different strategies were retrieved in this analysis. Direct comparisons showed that use of metformin (risk ratio [RR] 0.49, 95% CI 0.25–0.97) was associated with a significant risk reduction of HCC, while insulin (RR = 2.44, 95% CI 1.10- 5.56) may significantly increase the risk. Indirect evidence also suggested that insulin (RR = 2.37, 95% CI 1.21–4.75) was associated with a significantly increased risk of HCC. Additionally, metformin was effective in reducing the risk of HCC when compared with sulphonylurea (RR = 0.45, 95% CI 0.27–0.74) and insulin (RR = 0.28, 95% CI 0.17–0.47). Notably, metformin was hierarchically the best when compared with other antidiabetic therapies for the prevention of HCC. In summary, available evidence suggests that metformin was the most effective strategy to reduce HCC risk when compared with other antidiabetic interventions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.