A plasmonic photocatalyst Ag-AgI supported on mesoporous alumina (Ag-AgI/Al(2)O(3)) was prepared by deposition-precipitation and photoreduction methods. The catalyst showed high and stable photocatalytic activity for the degradation and mineralization of toxic persistent organic pollutants, as demonstrated with 2-chlorophenol (2-CP), 2,4-dichlorophenol (2,4-DCP), and trichlorophenol (TCP) under visible light or simulated solar light irradiation. On the basis of electron spin resonance, cyclic voltammetry analyses under a variety of experimental conditions, two electron transfer processes were verified from the excited Ag NPs to AgI and from 2-CP to the Ag NPs, and the main active species of O(2)(*-) and excited h(+) on Ag NPs were involved in the photoreaction system of Ag-AgI/Al(2)O(3). A plasmon-induced photocatalytic mechanism was proposed. Accordingly, the plasmon-induced electron transfer processes elucidated the photostability of Ag-AgI/Al(2)O(3). This finding indicates that the high photosensitivity of noble metal NPs due to surface plasmon resonance could be applied toward the development of new plasmonic visible-light-sensitive photocatalysts and photovoltaic fuel cells.
AgBr coated with silver (Ag) nanoparticles (NPs) were highly dispersed on ordered mesoporous γ-Al 2 O 3 (MA) by the deposition-precipitation method with surfactant (Ag-AgBr/MAP). The catalyst showed high and stable photocatalytic activity for the degradation and mineralization of toxic persistent organic pollutants, as demonstrated with 2-chlorophenol (2-CP), 2,4-dichlorophenol, and trichlorophenol under visible light or simulated solar light irradiation. The dispersion of Ag-AgBr NPs on MA strongly affected their photoactivity. On the basis of electron spin resonance and cyclic voltammetry analyses under a variety of experimental conditions, two plasmon-induced electron-transfer processes were verified from the excited Ag NPs to AgBr and from 2-CP to the Ag NPs, resulting in O 2• •-radicals were primary active species, whereas the excited h + on Ag NPs was involved in the photoreaction system of Ag-AgBr/MAP. The highly efficient degradation of pollutants came from both photoexcited AgBr and plasmon-excited Ag NPs. Accordingly, the plasmoninduced electron-transfer processes elucidated the photostability of Ag-AgBr/MAP. These findings indicate potential applications of noble metal NPs in the fields of developing visible-light-sensitive photocatalysts and photovoltaic fuel cells.
The plasmon-induced photocatalytic inactivation of enteric pathogenic microorganisms in water using Ag-AgI/Al(2)O(3) under visible-light irradiation was investigated. The catalyst was found to be highly effective at killing Shigella dysenteriae (S. dysenteriae), Escherichia coli (E. coli), and human rotavirus type 2 Wa (HRV-Wa). Its bactericidal efficiency was significantly enhanced by HCO(3)(-) and SO(4)(2-) ions, which are common in water, while phosphate had a slightly positive effect on the disinfection. Meanwhile, more inactivation of E. coli was observed at neutral and alkaline pH than at acid pH in Ag-AgI/Al(2)O(3) suspension. Furthermore, the effects of inorganic anions and pH on the transfer of plasmon-induced charges were investigated using cyclic voltammetry analyses. Two electron-transfer processes occurred, from bacteria to Ag nanoparticles (NPs) and from inorganic anions to Ag NPs to form anionic radicals. These inorganic anions including OH(-) in water not only enhanced electron transfer from plasmon-excited Ag NPs to AgI and from E. coli to Ag NPs, but their anionic radicals also increased bactericidal efficiency due to their absorbability by cells. The plasmon-induced electron holes (h(+)) on Ag NPs, O(2)(•-), and anionic radicals were involved in the reaction. The enhanced electron transfer is more crucial than the electrostatic force interaction of bacteria and catalyst for the plasmon-induced inactivation of bacteria using Ag-AgI/Al(2)O(3).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.