Employing single nanoparticle detection with a laboratory-built high-sensitivity flow cytometer, we developed a simple and versatile platform that is capable of detecting the surface plasmon resonance scattering of gold nanoparticles (GNPs) as small as 24 nm, differentiating GNPs of different sizes, and providing accurate quantification of GNPs. Low-concentration samples (fM to pM) in small volumes (microL) can be measured in minutes with an analysis rate of up to 100-200 GNPs per second. Among these features, absolute quantification provides a distinct advantage because it does not require standard samples.
Liposomes or phospholipid vesicles are one of the most versatile nanoparticles used to convey drugs, vaccines, genes, enzymes, or other substances to target cells and as a model to mimic biological membranes. To fulfil their roles in drug delivery and biotechnology, the physical and chemical properties of liposomes, such as size, shape, chemical composition, lamellarity, encapsulation efficiency of cargo molecules, and the density of proteins reconstituted in the membrane, need to be characterized to ensure reproducible preparation of the vesicles. Compared to bulk analysis, techniques focusing on the individual analysis of liposomes can reveal heterogeneity that is otherwise masked by ensemble averaging. Herein, we review the recent advances in techniques for single-liposome characterization.
Cellular autofluorescence can affect the sensitivity of fluorescence microscopic or flow cytometric assays by interfering with or even precluding the detection of low-level specific fluorescence. Here we developed a method to detect and quantify bacterial autofluorescence in the green region of the spectrum at the single-cell level using a laboratory-built high-sensitivity flow cytometer (HSFCM). The detection of the very weak bacterial autofluorescence was confirmed by analyzing polystyrene beads of comparable and larger size than bacteria in parallel. Dithionite reduction and air re-exposure experiments verified that the green autofluorescence mainly originates from endogenous flavins. Bacterial autofluorescence was quantified by calibrating the fluorescence intensity of nanospheres with known FITC equivalents, and autofluorescence distribution was generated by analyzing thousands of bacterial cells in 1 min. Among the eight bacterial strains tested, it was found that bacterial autofluorescence can vary from 80 to 1400 FITC equivalents per cell, depending on the bacterial species, and a relatively large cell-to-cell variation in autofluorescence intensity was observed. Quantitative measurements of bacterial autofluorescence provide a reference for the background signals that can be expected with bacteria, which is important in guiding studies of low-level gene expression and for the detection of low-abundance biological molecules in individual bacterial cells. This paper presents the first quantification of bacterial autofluorescence in FITC equivalents.
A laboratory-built high-sensitivity flow cytometer (HSFCM) was employed for the rapid and accurate detection of lactic acid bacteria (LAB) and their viability in probiotic products. LAB were stained with both the cell membrane-permeable SYTO 9 green-fluorescent nucleic acid stain and the red-fluorescent nucleic acid stain, propidium iodide, which penetrates only bacteria with compromised membranes. The side scatter and dual-color fluorescence signals of single bacteria were detected simultaneously by the HSFCM. Ultra-high temperature processing milk and skim milk spiked with Lactobacillus casei were used as the model systems for the optimization of sample pretreatment and staining. The viable LAB counts measured by the HSFCM were in good agreement with those of the plate count method, and the measured ratios between the live and dead LAB matched well with the theoretical ratios. The established method was successfully applied to the rapid quantification of live/dead LAB in yogurts and fermented milk beverages of different brands. Moreover, the concentration and viability status of LAB in ambient yogurt, a relatively new yet popular milk product in China, are also reported.
Advanced methods are urgently needed to determine the identity and viability of trace amounts of pathogenic bacteria in a short time. Existing approaches either fall short in the accurate assessment of microbial viability or lack specificity in bacterial identification. Bacteriophages (or phages for short) are viruses that exclusively infect bacterial host cells with high specificity. As phages infect and replicate only in living bacterial hosts, here we exploit the strategy of using tetracysteine (TC)-tagged phage in combination with biarsenical dye to the discriminative detection of viable target bacteria from dead target cells and other viable but nontarget bacterial cells. Using recombinant M13KE-TC phage and Escherichia coli ER2738 as a model system, distinct differentiation between individual viable target cells from dead target cells was demonstrated by flow cytometry and fluorescence microscopy. As few as 1% viable E. coli ER2738 can be accurately quantified in a mix with dead E. coli ER2738 by flow cytometry. With fluorescence microscopic measurement, specific detection of as rare as 1 cfu/mL original viable target bacteria was achieved in the presence of a large excess of dead target cells and other viable but nontarget bacterial cells in 40 mL artificially contaminated drinking water sample in less than 3 h. This TC-phage-FlAsH approach is sensitive, specific, rapid, and simple, and thus shows great potential in water safety monitoring, health surveillance, and clinical diagnosis of which trace detection and identification of viable bacterial pathogens is highly demanded.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.