The proposed approach is based on standard graph transduction, semi-supervised learning (SSL) framework. Its key novelty is the integration of global connectivity constraints into this framework. Although connectivity leads to higher order constraints and their number is an exponential, finding the most violated connectivity constraint can be done efficiently in polynomial time. Moreover, each such constraint can be represented as a linear inequality. Based on this fact, we design a cutting-plane algorithm to solve the integrated problem. It iterates between solving a convex quadratic problem of label propagation with linear inequality constraints, and finding the most violated constraint. We demonstrate the benefits of the proposed approach on a realistic and very challenging problem of cosegmentation of multiple foreground objects in photo collections in which the foreground objects are not present in all photos. The obtained results not only demonstrate performance boost induced by the connectivity constraints, but also show a significant improvement over the state-of-the-art methods.
Abstract. We propose a novel technique that significantly improves the performance of oriented chamfer matching on images with cluttered background. Different to other matching methods, which only measures how well a template fits to an edge map, we evaluate the score of the template in comparison to auxiliary contours, which we call normalizers. We utilize AdaBoost to learn a Normalized Oriented Chamfer Distance (NOCD). Our experimental results demonstrate that it boosts the detection rate of the oriented chamfer distance. The simplicity and ease of training of NOCD on a small number of training samples promise that it can replace chamfer distance and oriented chamfer distance in any template matching application.
In many practical cases, we need to generalize a model trained in a source domain to a new target domain.However, the distribution of these two domains may differ very significantly, especially sometimes some crucial target features may not have support in the source domain.This paper proposes a novel locality preserving projection method for domain adaptation task,which can find a linear mapping preserving the 'intrinsic structure' for both source and target domains.We first construct two graphs encoding the neighborhood information for source and target domains separately.We then find linear projection coefficients which have the property of locality preserving for each graph.Instead of combing the two objective terms under compatibility assumption and requiring the user to decide the importance of each objective function,we propose a multi-objective formulation for this problem and solve it simultaneously using Pareto optimization.The Pareto frontier captures all possible good linear projection coefficients that are preferred by one or more objectives.The effectiveness of our approach is justified by both theoretical analysis and empirical results on real world data sets.The new feature representation shows better prediction accuracy as our experiments demonstrate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.