Photocatalytic CO2 conversion into carbonaceous fuels through artificial photosynthesis is beneficial to global warming mitigation and renewable resource generation. However, a high cost is always required by special CO2-capturing devices for efficient artificial photosynthesis. For achieving highly efficient photocatalytic CO2 reduction (PCR) directly from natural air, we report rose-like BiOCl that is rich in Bi vacancies (VBi) assembled by nanosheets with almost fully exposed active {001} facets. These rose-like BiOCl with VBi assemblies provide considerable adsorption and catalytic sites, which hoists the CO2 capture and reduction capabilities, and thus expedites the PCR to a superior value of 21.99 μmol·g–1·h–1 CO generation under a 300 W Xe lamp within 5 h from natural air. The novel design and construction of a photocatalyst in this work could break through the conventional PCR system requiring compression and purification for CO2, dramatically reduce expenses, and open up new possibilities for the practical application of artificial photosynthesis.
Background: Significant amount of research, both experimental and numerical, has been conducted to study the mechanical behaviour of biodegradable polymer PL(L)A due to its wide range of applications. However, mechanical brittleness or poor elongation of PL(L)A has limited its applications considerably, particularly in the biomedical field. This study aims to study the potential in improving the ductility of PLA by blending with PBS in varied weight ratios. Methods: The preparation of PLA and PBS blends, with various weight ratios, was achieved by melting and mixing technique at high temperature using HAAKE™ Rheomix OS Mixer. Differential Scanning Calorimetry (DSC) was applied to investigate the melting behaviour, crystallization and miscibility of the blends. Small dog-bone specimens, produced by compression moulding, were used to test mechanical properties under uniaxial tension. Moreover, an advanced viscoplastic model with nonlinear hardening variables was applied to simulate ratedependent plastic deformation of PLA/PBS blends, with model parameters calibrated simultaneously against the tensile test data. Results: Optical Microscopy showed that PBS composition aid with the crystallization of PLA. The elongation of PLA/PBS blends increased with the increase of PBS content, but with a compromise of tensile modulus and strength. An increase of strain rate led to enhanced stress response, demonstrating the time-dependent deformation nature of the material. Model simulations of time-dependent plastic deformation for PLA/PBS blends compared well with experimental results. Conclusions: The crystallinity of PLA/PBS blends increased with the addition of PBS content. The brittleness of pure PLA can be improved by blending with ductile PBS using mechanical mixing technique, but with a loss of stiffness and strength. The tensile tests at different strain rates confirmed the time-dependent plastic deformation nature of the blends, i.e., viscoplasticity, which can be simulated by the Chaboche viscoplastic model with nonlinear hardening variables.
How to cite this article: Schiavone A, Qiu TY, Zhao LG. Crimping and deployment of metallic and polymeric stents --finite element modelling. Vessel Plus 2017;1:12-21.Aim: This paper aims to compare the mechanical performance of metallic (Xience) and bioresorbable polymeric (Elixir) stents during the process of crimping and deployment. Methods: Finite element software ABAQUS was used to create the geometrical models and meshes for the balloon, stent and diseased artery. To simulate the crimping of stents, 12 rigid plates were generated around the stent and subjected to radially enforced displacement. The deployment of both stents was simulated by applying internal pressure to the balloon, where hard contacts were defined between balloon, stent and diseased artery. Results: Elixir stent exhibited a lower expansion rate than Xience stent during deployment. The stent diameter achieved after balloon deflation was found smaller for Elixir stent due to higher recoiling. Lower level of stresses was found in the plaque and artery when expanded by Elixir stent. Reduced expansion, increased dogboning and decreased vessel stresses were obtained when considering the crimping-generated residual stresses in the simulations. Conclusion: There is a challenge for polymeric stents to match the mechanical performance of metallic stents. However, polymeric stents impose lower stresses to the artery system due to less property mismatch between polymers and arterial tissues, which could be clinically beneficial. Key words:Polymeric stents, metallic stents, finite element, crimping, deployment ABSTRACTArticle history:
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.