Wireless energy transfer has broad prospective applications. Current researches focus on electromagnetic induction and magnetic resonance. The former approach is sensitive to position and the latter has larger size, both of which affect the broad application of wireless energy transfer. Two layers of magnetostrictive effect materials and one layer of piezoelectric effect material are bound by epoxy resin, which generates magnetoelectric laminated composite. It is the first time that the output voltage, current and magnetoelectric factor have been deduced without DC magnetic bias. Three samples are implemented and the wireless energy transfer system based on them is developed. The tests on the samples verify the correctness of the theoretic analysis. Further experiments illustrate that there are double frequency characteristics for the magnetoelectric laminated composites; the resonant frequency is proportional to the reciprocal of the length of the composite; the open circuit voltage of the composite could reach 100 V (rms) under a magnetic field of 20 Oe; the maximum energy transferred is 520 mW, which is the highest record reported up to now, with the energy density 1.21W/cm3 and maximum transfer efficiency 35%; the rotation less than 30° has little effect on the output of the composites. Theoretical analyses and experimental results suggest that the magnetoelectric laminated composite based on Metglas/PFC is a very interesting approach to small volume and small power wireless energy transfer applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.