Wounds can be divided into two categories, acute and chronic. Acute wounds heal through the normal wound healing process. However, chronic wounds take longer to heal, leading to inflammation, pain, serious complications, and an economic burden of treatment costs. In addition, diabetes and burns are common causes of chronic wounds that are difficult to treat. The rapid and thorough treatment of chronic wounds, including diabetes wounds and burns, represents a significant unmet medical need. Wound dressings play an essential role in chronic wound treatment. Various biomaterials for wound healing have been developed. Among these, hydrogels are widely used as wound care materials due to their good biocompatibility, moisturizing effect, adhesion, and ductility. Wound healing is a complex process influenced by multiple factors and regulatory mechanisms in which stem cells play an important role. With the deepening of stem cell and regenerative medicine research, chronic wound treatment using stem cells has become an important field in medical research. More importantly, the combination of stem cells and stem cell derivatives with hydrogel is an attractive research topic in hydrogel preparation that offers great potential in chronic wound treatment. This review will illustrate the development and application of advanced stem cell therapy-based hydrogels in chronic wound healing, especially in diabetic wounds and burns.
Oral cancer is one of the highly malignant tumors with poor prognosis. The pathogenic mechanisms of oral cancer have remained to be fully elucidated and this brings significant challenges to the treatment. RNA modification is a common intracellular chemical modification that has been related to various pathological processes, such as blood diseases, immune system diseases and cancer. As the most common and abundant RNA modification in eukaryotic mRNA, N 6 -methyladenosine (m 6 A) modification has a crucial role in several cancers, including oral cancer. m 6 A modification directly affects gene expression levels and regulates various physiological and pathological processes. It has been demonstrated that m 6 A modification may affect the proliferation, migration and invasion of oral cancer cells by regulating the level of m 6 A modification. In the present review, the effects of m 6 A modification on the proliferation and death of oral cancer cells, as well as the occurrence and development of oral cancer, were analyzed in order to provide a new target for treatment. Furthermore, the roles of m 6 A modification in chemotherapy resistance and potential immunotherapy were analyzed and new treatment ideas were provided.
Hepatocellular carcinoma (HCC) is a highly mortal type of primary liver cancer. Abnormal epigenetic modifications are present in HCC, and RNA modification is dynamic and reversible and is a key post-transcriptional regulator. With the in-depth study of post-transcriptional modifications, RNA modifications are aberrantly expressed in human cancers. Moreover, the regulators of RNA modifications can be used as potential targets for cancer therapy. In RNA modifications, N6-methyladenosine (m6A), N7-methylguanosine (m7G), and 5-methylcytosine (m5C) and their regulators have important regulatory roles in HCC progression and represent potential novel biomarkers for the confirmation of diagnosis and treatment of HCC. This review focuses on RNA modifications in HCC and the roles and mechanisms of m6A, m7G, m5C, N1-methyladenosine (m1A), N3-methylcytosine (m3C), and pseudouridine (ψ) on its development and maintenance. The potential therapeutic strategies of RNA modifications are elaborated for HCC.
Bile duct, pancreatic, and gastric cancers are deadly digestive system tumors with high malignancy and poor patient prognosis. The efficiencies of conventional surgical treatment, radiation therapy, and chemotherapy are limited. In contrast, chimeric antigen receptor (CAR) T-cell therapy represents a landmark therapeutic approach to antitumor immunity with great efficacy in treating several hematological malignancies. CAR T-cell therapy involves genetically engineering the expression of specific antibodies based on the patient’s T-cell surface and amplifying these antibodies to identify and target tumor-associated antigens. CAR T-cell therapy can effectively inhibit disease progression and improve the survival of patients with bile duct, pancreatic, and gastric cancers. The effectiveness of CAR T cells in tumor therapy can be validated using xenograft models, providing a scientific testing platform. In this study, we have reviewed the progress in CAR T-cell production and its development, focusing on the current status and optimization strategies for engineered CAR T cells in the bile duct, pancreatic, and gastric cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.