Purpose: To investigate the effect of realistic microstructural geometry on the susceptibility-weighted MR signal in white matter (WM), with application to demyelination. Methods: Previous work has modeled susceptibility-weighted signals under the assumption that axons are cylindrical. In this study, we explored the implications of this assumption by considering the effect of more realistic geometries. A threecompartment WM model incorporating relevant properties based on the literature was used to predict the MR signal. Myelinated axons were modeled with several cross-sectional geometries of increasing realism: nested circles, warped/elliptical circles, and measured axonal geometries from electron micrographs. Signal simulations from the different microstructural geometries were compared with measured signals from a cuprizone mouse model with varying degrees of demyelination. Results: Simulation results suggest that axonal geometry affects the MR signal. Predictions with realistic models were significantly different compared with circular models under the same microstructural tissue properties, for simulations with and without diffusion. Conclusion: The geometry of axons affects the MR signal significantly. Literature estimates of myelin susceptibility, which are based on fitting biophysical models to the MR signal, are likely to be biased by the assumed geometry, as will any derived microstructural properties. Magn Reson Med 79:489-500, 2018. V C 2017 International Society for Magnetic Resonance in Medicine.
There are 12 billion injections given worldwide every year. For many injections, the intramuscular route is favoured over the subcutaneous route due to the increased vascularity of muscle tissue and the corresponding increase in the bioavailability of drugs when administered intramuscularly. This paper is a review of the variables that affect the success of intramuscular injections and the implications that these success rates have in psychiatry and general medicine. Studies have shown that the success rates of intended intramuscular injections vary between 32 and 52%, with the rest potentially resulting in inadvertent subcutaneous drug deposition. These rates are found to be even lower for certain at-risk populations, such as obese patients and those on antipsychotic medications. The variables associated with an increased risk of injection failure include female sex, obesity, site of injection, and subcutaneous fat depth. New guidelines and methods are needed in order to address this challenge and ensure that patients receive optimum care. Looking forward, the best way to improve the delivery of intramuscular injections worldwide is to develop uniform algorithms or innovative medical devices to confirm or guarantee successful delivery at the bedside.
Brain myelin and iron content are important parameters in neurodegenerative diseases such as multiple sclerosis (MS). Both myelin and iron content influence the brain's R2* relaxation rate. However, their quantification based on R2* maps requires a realistic tissue model that can be fitted to the measured data. In structures with low myelin content, such as deep gray matter, R2* shows a linear increase with increasing iron content. In white matter, R2* is not only affected by iron and myelin but also by the orientation of the myelinated axons with respect to the external magnetic field. Here, we propose a numerical model which incorporates iron and myelin, as well as fibre orientation, to simulate R2* decay in white matter. Applying our model to fibre orientation‐dependent in vivo R2* data, we are able to determine a unique solution of myelin and iron content in global white matter. We determine an averaged myelin volume fraction of 16.02 ± 2.07% in non‐lesional white matter of patients with MS, 17.32 ± 2.20% in matched healthy controls, and 18.19 ± 2.98% in healthy siblings of patients with MS. Averaged iron content was 35.6 ± 8.9 mg/kg tissue in patients, 43.1 ± 8.3 mg/kg in controls, and 47.8 ± 8.2 mg/kg in siblings. All differences in iron content between groups were significant, while the difference in myelin content between MS patients and the siblings of MS patients was significant. In conclusion, we demonstrate that a model that combines myelin‐induced orientation‐dependent and iron‐induced orientation‐independent components is able to fit in vivo R2* data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.