Chemodynamic therapy based on Fe 2+ -catalyzed Fenton reaction holds great promise in cancer treatment. However, low-produced hydroxyl radicals in tumor cells constitute its severe challenges because of the fact that Fe 2+ with high catalytic activity could be easily oxidized into Fe 3+ with low catalytic activity, greatly lowering Fenton reaction efficacy. Here, we codeliver CuS with the iron-containing prodrug into tumor cells. In tumor cells, the overproduced esterase could cleave the phenolic ester bond in the prodrug to release Fe 2+ , activating Fenton reaction to produce the hydroxyl radical. Meanwhile, CuS could act as a nanocatalyst for continuously catalyzing the regeneration of high-active Fe 2+ from low-active Fe 3+ to produce enough hydroxyl radicals to efficiently kill tumor cells as well as a photothermal therapy agent for generating hyperthermia for thermal ablation of tumor cells upon NIR irradiation. The results have exhibited that the approach of photothermal therapy nanomaterials boosting transformation of Fe 3+ into Fe 2+ in tumor cells can highly improve Fenton reaction for efficient chemodynamic therapy. This strategy was demonstrated to have an excellent antitumor activity both in vitro and in vivo, which provides an innovative perspective to Fenton reaction-based chemodynamic therapy.
Polyethylene (PE) is one of the most widely used materials in the world, but it is virtually undegradable and quickly accumulates in nature, which may contaminate the environment. We utilized the cobaltmediated radical copolymerization (CMRP) of ethylene and cyclic ketene acetals (CKAs) to effectively incorporate ester groups into PE backbone as cleavable structures to make PE-based copolymer degradable under mild conditions. The content of ethylene and ester units in the produced copolymer could be finely regulated by CKA concentration or ethylene pressure. Also, the copolymerization of ethylene and CKA with other functional vinyl monomers can produce functional and degradable PEbased copolymer. All the formed PE-based copolymers could degrade in the presence of trimethylamine (Et 3 N).
The synthesis of polymers with on-demand sequence structures is very important not only for academic researchers but also for industry. However, despite the existing polymerization techniques, it is still difficult to achieve copolymer chains with on-demand sequence structures. Here we report a dually switchable and controlled interconvertible polymerization system; in this system, two distinct orthogonal polymerizations can be selectively switched ON/OFF independent of each other and they can be interconverted promptly and quantitatively according to external stimuli. Thus, the external stimuli can manipulate the insertion of distinct monomers into the resulting copolymer chains temporally, spatially, and orthogonally, allowing the on-demand precise arrangement of sequence structures in the resulting polymers. This dually switchable and interconvertible polymerization system provides a powerful tool for synthesizing materials that are not accessible by other polymerization methods.
A RAFT/MADIX method can not only copolymerize ethylene with a diverse range of functionally polar monomers, but can also easily tune the polar composition and the polar monomer distribution along the produced copolymer chains. This highly versatile RAFT/MADIX copolymerization platform provides access to a diverse range of polyethylene materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.