Metal−organic frameworks (MOFs) can respond to light in a number of interesting ways. Photochromism is observed when a structural change to the framework is induced by the absorption of light, which results in a color change. In this work, we show that introducing quinoxaline ligands to MUF-7 and MUF-77 (MUF = Massey University Framework) produces photochromic MOFs that change color from yellow to red upon the absorption of 405 nm light. This photochromism is observed only when the quinoxaline units are incorporated into the framework and not for the standalone ligands in the solid state. Electron paramagnetic resonance (EPR) spectroscopy shows that organic radicals form upon irradiation of the MOFs. The EPR signal intensities and longevity depend on the precise structural details of the ligand and framework. The photogenerated radicals are stable for long periods in the dark but can be switched back to the diamagnetic state by exposure to visible light. Single-crystal X-ray diffraction analysis reveals bond length changes upon irradiation that are consistent with electron transfer. The multicomponent nature of these frameworks allows the photochromism to emerge by allowing through-space electron transfer, precisely positioning the framework building blocks, and tolerating functional group modifications to the ligands.
The guest adsorption phenomena in multicomponent metal−organic frameworks (MOFs) are intricate due to their structural complexities. In this work, we studied two members of the isostructural series of MUF-77 frameworks that consist of long or short alkyl groups. The adsorption of methanol, N,N-dimethylaniline (DMA) and acridine orange (AO) in two structures of MUF-77 has been investigated. 2 H solidstate nuclear magnetic resonance (SSNMR) and two-dimensional 1 H− 13 C NMR spectroscopy were used to probe the dynamics of various compartments of MUF-77. Through the analyses of dynamic behavior by SSNMR and molecular dynamics simulations, we elucidate the spatial distribution of guest molecules are nonuniform around different chemical components, in different pore structures, and across different parts of MOF lattice. In addition, we reveal that the framework flexibility of MUF-77 with short alkyl groups is reduced upon guest adsorption yet the framework flexibility of MUF-77 with long alkyl groups increases upon loading with methanol.
Sheffield (2016) proposed an inventory accumulation model with two types of products which encodes the critical Fortuin-Kasteleyn model on a random planar map, and showed that a two-dimensional inventory accumulation trajectory in the discrete model scales to a correlated planar Brownian motion. In this work, we generalize the inventory model to k types of products for any integer k ≥ 2, and prove that the corresponding trajectory scales to a k-dimensional Brownian motion with a certain covariance matrix. We also discuss implications of the scaling limit result in inventory theory and beyond.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.