A new image recognition system based on multiple linear regression is proposed. Particularly, there are a number of innovations in image segmentation and recognition system. In image segmentation, an improved histogram segmentation method which can calculate threshold automatically and accurately is proposed. Meanwhile, the regional growth method and true color image processing are combined with this system to improve the accuracy and intelligence. While creating the recognition system, multiple linear regression and image feature extraction are utilized. After evaluating the results of different image training libraries, the system is proved to have effective image recognition ability, high precision, and reliability.
Sparse sensing schemes based on matrix completion for data collection have been proposed to reduce the power consumption of data-sensing and transmission in wireless sensor networks (WSNs). While extensive efforts have been made to improve the recovery accuracy from the sparse samples, it is usually at the cost of running time. Moreover, most data-collection methods are difficult to implement with low sampling ratio because of the communication limit. In this paper, we design a novel data-collection method including a Rotating Random Sparse Sampling method and a Fast Singular Value Thresholding algorithm. With the proposed method, nodes are in the sleep mode most of the time, and the sampling ratio varies over time slots during the sampling process. From the samples, a corresponding algorithm with Nesterov technique is given to recover the original data accurately and fast. With two real-world data sets in WSNs, simulations verify that our scheme outperforms other schemes in terms of energy consumption, reconstruction accuracy, and rate. Moreover, the proposed sampling method enhances the recovery algorithm and prolongs the lifetime of WSNs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.