RNAi therapeutics have been growing. Patisiran and givosiran, two siRNA-based drugs, were approved by the Food and Drug Administration in 2018 and 2019, respectively. However, there is rare news on the advance of miRNA drugs (another therapeutic similar to siRNA drug). Here we report the existing obstacles of miRNA therapeutics by analyses for resources available in a drug target perspective, despite being appreciated when it began. Only 10 obtainable miRNA drugs have been in clinical trials with none undergoing phase III, while over 60 siRNA drugs are in complete clinical trial progression including two approvals. We mechanically compared the two types of drug and found that their major distinction lay in the huge discrepancy of the target number of two RNA molecules, which was caused by different complementary ratios. One miRNA generally targets tens and even hundreds of genes. We named it “too many targets for miRNA effect” (TMTME). Further, two adverse events from the discontinuation of two miRNA therapeutics were exactly answered by TMTME. In summary, TMTME is inevitable because of the special complementary approach between miRNA and its target. It means that miRNA therapeutics would trigger a series of unknown and unpreventable consequences, which makes it a considerable alternative for application.
TRIM protein family is an evolutionarily conserved gene family implicated in a number of critical processes including inflammation, immunity, antiviral and cancer. In an effort to profile the expression patterns of TRIM superfamily in several non-small cell lung cancer (NSCLC) cell lines, we found that the expression of 10 TRIM genes including TRIM3, TRIM7, TRIM14, TRIM16, TRIM21, TRIM22, TRIM29, TRIM59, TRIM66 and TRIM70 was significantly upregulated in NSCLC cell lines compared with the normal human bronchial epithelial (HBE) cell line, whereas the expression of 7 other TRIM genes including TRIM4, TRIM9, TRIM36, TRIM46, TRIM54, TRIM67 and TRIM76 was significantly down-regulated in NSCLC cell lines compared with that in HBE cells. As TRIM59 has been reported to act as a proto-oncogene that affects both Ras and RB signal pathways in prostate cancer models, we here focused on the role of TRIM59 in the regulation of NSCLC cell proliferation and migration. We reported that TRIM59 protein was significantly increased in various NSCLC cell lines. SiRNA-induced knocking down of TRIM59 significantly inhibited the proliferation and migration of NSCLC cell lines by arresting cell cycle in G2 phase. Moreover, TRIM59 knocking down affected the expression of a number of cell cycle proteins including CDC25C and CDK1. Finally, we knocked down TRIM59 and found that p53 protein expression levels did not upregulate, so we proposed that TRIM59 may promote NSCLC cell growth through other pathways but not the p53 signaling pathway.
Macroautophagy/autophagy is a multistep cellular process that sequesters cytoplasmic components for lysosomal degradation. BECN1/Beclin1 is a central protein that assembles cofactors for the formation of a BECN1-PIK3C3-PIK3R4 complex to trigger the autophagy protein cascade. Discovering the regulators of BECN1 is important for understanding the mechanism of autophagy induction. Here, we demonstrate that TRIM59, a tripartite motif protein, plays an important role in autophagy regulation in non-small cell lung cancer (NSCLC). On the one hand, TRIM59 regulates the transcription of BECN1 through negatively modulating the NFKB pathway. On the other hand, TRIM59 regulates TRAF6 induced K63-linked ubiquitination of BECN1, thus affecting the formation of the BECN1-PIK3C3 complex. We further demonstrate that TRIM59 can mediate K48-linked ubiquitination of TRAF6 and promote the proteasomal degradation of TRAF6. Taken together, our findings reveal novel dual roles for TRIM59 in autophagy regulation by affecting both the transcription and the ubiquitination of BECN1. Abbreviations: ACTB: actin beta; BECN1: beclin 1; CHX: cycloheximide; CQ: chloroquine; GFP: green fluorescent protein; HA: haemagglutinin tag; His: polyhistidine tag; LC3B: microtubule associated protein 1 light chain 3 beta; NFKB: nuclear factor kappa B; NFKBIA: NFKB inhibitor alpha; NSCLC: non-small cell lung cancer; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; RELA: RELA proto-oncogene, NF-kB subunit; SQSTM1: sequestosome 1; tGFP: Turbo green fluorescent protein; TRAF6: TNF receptor associated factor 6; TRIM59: tripartite motif containing 59; B: ubiquitin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.