By applying early disturbance to the concrete, the influence of the disturbance on the macroscopic mechanical properties of basalt fiber concrete during the period from the initial setting to the final setting is explored, and the influence mechanism is revealed. Also, the influence of this disturbance on the process of sulfate erosion of concrete is evaluated by the sulfate erosion test and by the ultrasonic data acquisition of its damage process. The experimental results show that the flexural strength of basalt fiber concrete is increased after the concrete has been disturbed in the early stage of condensation but is decreased in the middle stage of condensation and is not affected in the later stage. When the condensation and hardening processes are disturbed, damage is caused inside the concrete, which is greater with the increase in the condensation degree until the penetration resistance reaches about 15 MPa, which then is more and more reduced. The durability of basalt fiber concrete is reduced by disturbance, which has a significant effect on it when the penetration resistance is between 7 MPa and 16 MPa.
In this paper, the response characteristics of wave propagation in entangled metallic wire materials (EMWMs) are investigated by acoustic emission. The frequency, amplitude of wave emission, and the pre-compression force of the specimen can be adjusted in the experimental setup. EMWM specimens fabricated from stainless steel wires and with different design parameters are tested in this work. The results show that waves of different amplitudes propagate in EMWMs with approximate linear characteristics and the fluctuation coefficient of wave passing ratios is calculated below 15%. The response spectrum of passing waves shows a distinct single-peak characteristic, with the peak response at approximately 14 kHz. The parameters of pre-compression force, porosity, wire diameter, helix diameter, specimen height, and the layered structure of specimens have no significant effect on the frequency characteristics but moderately affect the wave passing ratios. Notably, EMWMs exhibit a lower wave passing ratio (ranging from 0.01 to 0.18) compared to aluminum alloy and natural rubber. The characteristics of response spectrums can be successfully reproduced by the finite element simulation. This work demonstrates EMWMs’ potential as an acoustic frequency vibration isolation material, offering excellent performance and engineering design convenience.
This paper investigates the influence of high temperature treatment processes on the mechanical characteristics of entangled metallic wire materials (EMWM) via quasi-static compression tests. The treatment methods including high-temperature treatment and high-temperature with loading treatment were tested. The variation effects of size in molding direction, tangent modulus and loss factor were obtained by contrast results of EMWM specimens via the treatment processes with initial performance. The results indicate that the treatment processes proposed in this study can significantly improve the mechanical properties of EMWM materials and have a wide range of application for EMWM specimens with different structural parameters. After the treatment processes, the size of specimens in molding direction decreased slightly, the tangent modulus increased significantly, and the loss factor decreased slightly. With the increase of treatment temperature, the variation of mechanical parameters intensified. For EMWM specimens with different relative densities and heights, the treatment processes still have a significant improvement effect on quasi-static mechanical properties. Finally, the secondary molding theory is carried out to explain the influence of high temperature treatment process on EMWM’s dimensions and mechanical properties. The effects of treatment temperature and repetition times obtained in this study are relevant to the design of treatment processes for EMWM materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.