Low-dimensional organic–inorganic halide perovskites have attracted interest for their properties in exciton dynamics, broad-band emission, magnetic spin selectivity. However, there is no quantitative model for predicting the structure-directing effect of organic cations on the dimensionality of these low-dimensional perovskites. Here, we report a machine learning (ML)-assisted approach to predict the dimensionality of lead iodide-based perovskites. A literature review reveals 86 reported amines that are classified into “2D”-forming and “non-2D”-forming based on the dimensionality of their perovskites. Machining learning models were trained and tested based on the classification and descriptor features of these ammonium cations. Four structural features, including steric effect index, eccentricity, largest ring size, and hydrogen-bond donor, have been identified as the key controlling factors. On the basis of these features, a quantified equation is created to calculate the probability of forming 2D perovskite for a selected amine. To further illustrate its predicting capability, the built model is applied to several untested amines, and the predicted dimensionality is verified by growing single crystals of perovskites from these amines. This work represents a step toward predicting the crystal structures of low dimensional hybrid halide perovskites using ML as a tool.
Here, we present the synthesis and crystal structure of Rb3InCl6 prepared from air stable reagents via a two-step process that proceeds through the intermediate Rb2InCl5·H2O. Rb3InCl6 crystallizes with the Rb3YCl6 structure type (C2/c), which can be derived from the double perovskite structure by noncooperative tilting of isolated [InCl6]3– octahedra. Despite this lowering of symmetry, the optical properties are similar to the cubic double perovskite Cs2NaInCl6. Partial substitution of In3+ with Sb3+ in Rb3InCl6 results in intense cyan-green photoluminescence originating from localized 5s2 to 5s15p1 electronic transitions of [SbCl6]3– polyatomic anions. In comparison with the cubic double perovskite phosphor Cs2NaInCl6:Sb3+, the octahedral tilting distortion increases the electronic isolation of the In/Sb-centered octahedra thus facilitating electron and hole localization on Sb3+ sites, leading to bright photoluminescence. The distorted crystal structure also leads to a larger Stokes shift (1.29 eV) and a corresponding red shift of the emission peak (λmax = 522 nm) compared to the more symmetric Cs2NaInCl6:Sb3+ (Stokes shift ≈ 0.94 eV, λmax = 445 nm).
A symmetry mode analysis yields 47 symmetrically distinct patterns of octahedral tilting in hybrid organic–inorganic layered perovskites that adopt the n = 1 Ruddlesden–Popper (RP) structure. The crystal structures of compounds belonging to this family are compared with the predictions of the symmetry analysis. Approximately 88% of the 140 unique structures have symmetries that agree with those expected based on octahedral tilting alone, while the remaining compounds have additional structural features that further lower the symmetry, such as asymmetric packing of bulky organic cations, distortions of metal-centered octahedra or a shift of the inorganic layers that deviates from the a/2 + b/2 shift associated with the RP structure. The structures of real compounds are heterogeneously distributed amongst the various tilt systems, with only 9 of the 47 tilt systems represented. No examples of in-phase ψ-tilts about the a and/or b axes of the undistorted parent structure were found, while at the other extreme ∼66% of the known structures possess a combination of out-of-phase ϕ-tilts about the a and/or b axes and θ-tilts (rotations) about the c axis. The latter combination leads to favorable hydrogen bonding interactions that accommodate the chemically inequivalent halide ions within the inorganic layers. In some compounds, primarily those that contain either Pb2+ or Sn2+, favorable hydrogen bonding interactions can also be achieved by distortions of the octahedra in combination with θ-tilts.
A novel Zn benzotriazolate metal–organic framework (MOF), [Zn9(OAc)6(bbtm)6] (1, bbtm2– = bis(benzotriazolyl)methanone, OAc– = acetate), has been synthesized and structurally characterized using micro-crystal electron diffraction. The framework contains 12-connected nonanuclear Zn clusters with Zn–OAc groups separated by short intercluster Zn···Zn distances of 6.06 Å. Postsynthetic OAc–/OH– ligand exchange followed by thermal activation generates 1a-OH, which adsorbs CO2 at very low pressures (1.37 mmol/g at 2.5 mbar) and requires an unusually high desorption temperature (>160 °C). Diffuse reflectance IR Fourier transform spectroscopy (DRIFTS) and density functional theory (DFT) calculations have been used to interrogate the CO2 binding mechanism in 1a-OH. The formation of unsymmetric bridging carbonate ligands within the Zn···Zn pockets accompanied by strong hydrogen bonding of the carbonate with a neighboring zinc aqua ligand explains the remarkably strong CO2 affinity of 1a-OH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.