Background: TRPM2 channels play an essential role in cell death following oxidative stress. Results: Dominant negative TRPM2-S decreases growth of neuroblastoma xenografts and increases doxorubicin sensitivity through modulation of HIF-1/2␣ expression, mitophagy, and mitochondrial function. Conclusion: TRPM2 is important for neuroblastoma growth and viability through modulation of HIF-1/2␣. Significance: Modulation of TRPM2 may be a novel approach in cancer therapeutics.
BACKGROUND: Circulating tumor DNA (ctDNA) has emerged as a noninvasive biomarker for dynamically monitoring tumors. However, published data on perioperative ctDNA in patients with operable non-small cell lung cancer (NSCLC) are currently limited. METHODS: This prospective study recruited 123 patients with resectable stage I to IIIA NSCLC. Preoperative and postoperative plasma samples and tumor tissue samples were subjected to next-generation sequencing with a panel of 425 cancer-related genes. Peripheral blood samples were collected before surgery, postoperatively within 1 month, and every 3 to 6 months for up to 3 years. RESULTS: After 4 exclusions, 119 eligible patients were enrolled from June 2016 to February 2019. Presurgical ctDNA was detectable in 29 of 117 patients (24.8%) and was associated with inferior recurrence-free survival (RFS; hazard ratio [HR], 2.42; 95% CI, 1.11-5.27; P = .022) and inferior overall survival (OS; HR, 5.54; 95% CI, 1.01-30.35; P = .026). Similarly, ctDNA was detected in 12 of 116 first postsurgical samples (10.3%) and was associated with shorter RFS (HR, 3.04; 95% CI, 1.22-7.58; P = .012). During surveillance after surgery, longitudinal ctDNA-positive patients (37 of 119; 31.1%) had significantly shorter RFS (HR, 3.46; 95% CI, 1.59-7.55; P < .001) and significantly shorter OS (HR, 9.99; 95% CI, 1.17-85.78; P = .010) in comparison with longitudinal ctDNA-negative patients. Serial ctDNA detection preceded radiologic disease recurrence by a median lead time of 8.71 months. CONCLUSIONS: These results suggest that perioperative ctDNA analyses can predict recurrence and survival, and serial ctDNA analyses can identify disease recurrence/metastasis earlier than routine radiologic imaging in patients with resectable NSCLC.
SummaryIn this study, we characterized the role of an apple cytosolic malate dehydrogenase gene (MdcyMDH) in the tolerance to salt and cold stresses and investigated its regulation mechanism in stress tolerance. The MdcyMDH transcript was induced by mild cold and salt treatments, and MdcyMDH‐overexpressing apple plants possessed improved cold and salt tolerance compared to wild‐type (WT) plants. A digital gene expression tag profiling analysis revealed that MdcyMDH overexpression largely altered some biological processes, including hormone signal transduction, photosynthesis, citrate cycle and oxidation–reduction. Further experiments verified that MdcyMDH overexpression modified the mitochondrial and chloroplast metabolisms and elevated the level of reducing power, primarily caused by increased ascorbate and glutathione, as well as the increased ratios of ascorbate/dehydroascorbate and glutathione/glutathione disulphide, under normal and especially stress conditions. Concurrently, the transgenic plants produced a high H2O2 content, but a low O2·− production rate was observed compared to the WT plants. On the other hand, the transgenic plants accumulated more free and total salicylic acid (SA) than the WT plants under normal and stress conditions. Taken together, MdcyMDH conferred the transgenic apple plants a higher stress tolerance by producing more reductive redox states and increasing the SA level; MdcyMDH could serve as a target gene to genetically engineer salt‐ and cold‐tolerant trees.
A series of clinical trials have confirmed the correlation between vascular calcification (VC) and cardiovascular events and mortality. However, current treatments have little effects on the regression of VC. Potent and illustrative mechanisms have been proven to exist in both bone metabolism and VC, indicating that these two processes share similarities in onset and progression. Multiple osteoblast-like cells and signaling pathways are involved in the process of VC. In this review, we summarized the roles of different osteoblast-like cells and we emphasized on how they communicated and interacted with each other using different signaling pathways. Further studies are needed to uncover the underlying mechanisms and to provide novel therapies for VC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.