Graph pattern matching is often defined in terms of subgraph isomorphism, an np-complete problem. To lower its complexity, various extensions of graph simulation have been considered instead. These extensions allow pattern matching to be conducted in cubic-time. However, they fall short of capturing the topology of data graphs, i.e., graphs may have a structure drastically different from pattern graphs they match, and the matches found are often too large to understand and analyze. To rectify these problems, this paper proposes a notion of strong simulation, a revision of graph simulation, for graph pattern matching. (1) We identify a set of criteria for preserving the topology of graphs matched. We show that strong simulation preserves the topology of data graphs and finds a bounded number of matches. (2) We show that strong simulation retains the same complexity as earlier extensions of simulation, by providing a cubic-time algorithm for computing strong simulation. (3) We present the locality property of strong simulation, which allows us to effectively conduct pattern matching on distributed graphs. (4) We experimentally verify the effectiveness and efficiency of these algorithms, using real-life data and synthetic data.
Recently, with the development of mobile Internet and smartphones, the online minimum bipartite matching in real time spatial data (OMBM) problem becomes popular. Specifically, given a set of service providers with specific locations and a set of users who dynamically appear one by one, the OMBM problem is to find a maximum-cardinality matching with minimum total distance following that once a user appears, s/he must be immediately matched to an unmatched service provider, which cannot be revoked, before subsequent users arrive. To address this problem, existing studies mainly focus on analyzing the worst-case competitive ratios of the proposed online algorithms, but study on the performance of the algorithms in practice is absent. In this paper, we present a comprehensive experimental comparison of the representative algorithms of the OMBM problem. Particularly, we observe a surprising result that the simple and efficient greedy algorithm, which has been considered as the worst due to its exponential worst-case competitive ratio, is significantly more effective than other algorithms. We investigate the results and further show that the competitive ratio of the worst case of the greedy algorithm is actually just a constant, 3.195, in the average-case analysis. We try to clarify a 25-year misunderstanding towards the greedy algorithm and justify that the greedy algorithm is not bad at all. Finally, we provide a uniform implementation for all the algorithms of the OMBM problem and clarify their strengths and weaknesses, which can guide practitioners to select appropriate algorithms for various scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.