White lupin (Lupinus albus) is a legume crop that develops cluster roots and has high phosphorus (P)-use efficiency (PUE) in low-P soils. Here, we assemble the genome of white lupin and find that it has evolved from a whole-genome triplication (WGT) event. We then decipher its diploid ancestral genome and reconstruct the three sub-genomes. Based on the results, we further reveal the sub-genome dominance and the genic expression of the different sub-genomes varying in relation to their transposable element (TE) density. The PUE genes in white lupin have been expanded through WGT as well as tandem and dispersed duplications. Furthermore, we characterize four main pathways for high PUE, which include carbon fixation, cluster root formation, soil-P remobilization, and cellular-P reuse. Among these, auxin modulation may be important for cluster root formation through involvement of potential genes LaABCG36s and LaABCG37s. These findings provide insights into the genome evolution and low-P adaptation of white lupin.
Two branching strategies are exhibited in crops: enhanced apical dominance, as in maize; or weak apical dominance, as in rice. However, the underlying mechanism of weak apical dominance remains elusive. OsWUS, an ortholog of Arabidopsis WUSCHEL (WUS) in rice, is required for tiller development. In this study, we identified and functionally characterized a low-tillering mutant decreased culm number 1 (dc1) that resulted from loss-of-function of OsWUS. The dc1 tiller buds are viable but repressed by the main culm apex, leading to stronger apical dominance than that of the wild-type (WT). Auxin response is enhanced in the dc1 mutant, and knocking out the auxin action-associated gene ABERRANT SPIKELET AND PANICLE 1 (ASP1) de-repressed growth of the tiller buds in the dc1 mutant, suggesting that OsWUS and ASP1 are both involved in outgrowth of the rice tiller bud. Decapitation triggers higher contents of cytokinins in the shoot base of the dc1 mutant compared with those in the WT, and exogenous application of cytokinin is not sufficient for sustained growth of the dc1 tiller bud. Transcriptome analysis indicated that expression levels of transcription factors putatively bound by ORYZA SATIVA HOMEOBOX 1 (OSH1) are changed in response to decapitation and display a greater fold change in the dc1 mutant than that in the WT. Collectively, these findings reveal an important role of OsWUS in tiller bud growth by influencing apical dominance, and provide the basis for an improved understanding of tiller bud development in rice.
The tissue culture regeneration system of Lupinus albus has always been considered as recalcitrant material due to its genotype-dependent response and low regeneration efficiency that hamper the use of genetic engineering. Establishment of repeatable plant regeneration protocol is a prerequisite tool for successful application of genetic engineering. This aim of this study was to develop standardized, efficient protocol for successful shoot induction from cotyledonary node of white lupin. In this study, 5 day old aseptically cultured seedlings were used to prepare three explants (half cotyledonary node, HCN; whole cotyledonary node, WCN; and traditional cotyledonary node, TCN), cultured on four concentrations of M519 medium (M519, ½ M519, 1/3 M519, and ¼ M519), containing four carbohydrate sources (sucrose, fructose, maltose, and glucose), and stimulated with various combinations of KT (kinetin), and NAA (naphthalene acetic acid) for direct shoot regeneration. High frequency of 80% shoot regeneration was obtained on ½ M519 medium (KT 4.0 mg L−1 + NAA 0.1 mg L−1) by using HCN as an explant. Interestingly, combinations of (KT 4.0 mg L−1 + NAA 0.1 mg L−1 + BAP 1.67 mg L−1), and (KT 2.0 mg L−1 + NAA 0.1 mg L−1) showed similar shoot regeneration frequency of 60%. Augmentation of 0.25 g L−1 activated charcoal (AC) not only reduced browning effect but also improved shoot elongation. Among the all carbohydrate sources, sucrose showed the highest regeneration frequency with HCN. Additionally, 80% rooting frequency was recorded on ½ M519 containing IAA 1.0 mg L−1 + KT 0.1 mg L−1 (indole acetic acid) after 28 days of culturing. The present study describes establishment of an efficient and successful protocol for direct plant regeneration of white lupin from different cotyledonary nodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.