Abstract. Rainfall erosivity quantifies the effect of rainfall and runoff on the rate of soil loss. Maps of rainfall erosivity are needed for erosion assessment using the Universal Soil Loss Equation (USLE) and its successors. To improve erosivity maps that are currently available, hourly and daily rainfall data from 2381 stations for the period 1951–2018 were used to generate new R-factor and 1-in-10-year event EI30 maps for mainland China (available at https://doi.org/10.12275/bnu.clicia.rainfallerosivity.CN.001; Yue et al., 2020b). One-minute rainfall data from 62 stations, of which 18 had a record length > 29 years, were used to compute the “true” rainfall erosivity against which the new R-factor and 1-in-10-year EI30 maps were assessed to quantify the improvement over the existing maps through cross-validation. The results showed that (1) existing maps underestimated erosivity for most of the south-eastern part of China and overestimated for most of the western region; (2) the new R-factor map generated in this study had a median absolute relative error of 16 % for the western region, compared to 162 % for the existing map, and 18 % for the rest of China. The new 1-in-10-year EI30 map had a median absolute relative error of 14 % for the central and eastern regions of China, compared to 21 % for the existing map (map accuracy was not evaluated for the western region where the 1 min data were limited); (3) the R-factor map was improved mainly for the western region, because of an increase in the number of stations from 87 to 150 and temporal resolution from daily to hourly; (4) the benefit of increased station density for erosivity mapping is limited once the station density reached about 1 station per 10 000 km2.
The Tibetan Plateau is influenced by global climate change which results in frequent melting of glaciers and snow, and in heavy rainfalls. These conditions may increase the risk of soil erosion, but prediction is not feasible due to scarcity of rainfall data in the high altitudes of the region. In this study, daily precipitation data from 1 January 1981 to 31 December 2015 were selected for 38 meteorological stations in the Tibetan Plateau, and annual and seasonal rainfall erosivity were calculated for each station. Additionally, we used the Mann–Kendall trend test, Sen’s slope, trend coefficient, and climate tendency rate indicators to detect the temporal variation trend of rainfall erosivity. The results showed that the spatial distribution of rainfall erosivity in the Tibetan Plateau exhibited a significant decreasing trend from southeast to northwest. The average annual rainfall erosivity is 714 MJ·mm·ha−1·h−1, and varies from 61 to 1776 MJ·mm·ha−1·h−1. Rainfall erosivity was mainly concentrated in summer and autumn, accounting for 67.5% and 18.5%, respectively. In addition, annual, spring, and summer rainfall erosivity were increasing, with spring rainfall erosivity highly significant. Temporal and spatial patterns of rainfall erosivity indicated that the risk of soil erosion was relatively high in the Hengduan mountains in the eastern Tibetan Plateau, as well as in the Yarlung Zangbo River Valley and its vicinity.
Abstract. Rainfall erosivity represents the effect of rainfall and runoff on the average rate of soil erosion. Maps of rainfall erosivity are indispensable for soil erosion assessment using the Universal Soil Loss Equation (USLE) and its successors. To improve current erosivity maps based on daily rainfall data for mainland China, hourly rainfall data from 2381 stations for the period 1951–2018 were collected to generate the R factor and the 1-in-10-year EI30 maps (available at https://dx.doi.org/10.12275/bnu.clicia.rainfallerosivity.CN.001; Yue et al., 2020). Rainfall data at 1-min intervals from 62 stations (18 stations) were collected to calculate rainfall erosivities as true values to evaluate the improvement of the new R factor map (1-in-10-year EI30 map) from the current maps. Both the R factor and 1-in-10-year EI30 decreased from the southeastern to the northwestern, ranging from 0 to 25300 MJ mm ha−1 h−1 a−1 for the R factor and 0 to 11246 MJ mm ha−1 h−1 for the 1-in-10-year EI30. New maps indicated current maps existed an underestimation for most of the southeastern areas and an overestimation for most of the middle and western areas. Comparing with the current maps, the R factor map generated in this study improved the accuracy from 19.4 % to 15.9 % in the mid-western and eastern regions, from 45.2 % to 21.6 % in the western region, and the 1-in-10-year EI30 map in the mid-western and eastern regions improved the accuracy from 21.7 % to 13.0 %. The improvement of the new R factor map can be mainly contributed to the increase of data resolution from daily data to hourly data, whereas that of new 1-in-10-year EI30 map to the increase of the number of stations from 744 to 2381. The effect of increasing the number of stations to improve the interpolation seems to be not very obvious when the station density was denser than about 10 · 103 km2 1 station.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.