As nitrous oxide (N2O) is one of the most important greenhouse gases, N2O emission pathways and regulation techniques in soils with different vegetation types have become a research focus. Currently, a diverse array of research exists on the N2O emissions from soils of different vegetation types, e.g., forest, grassland, and agriculture. Few studies have investigated the microbial processes of N2O emissions from lawn soils. Fertilization levels in lawn soils are often similar to or much higher than those in agricultural ecosystems, thus fertilized lawn is an important source of atmospheric N2O. In the study, we employed the 15N-nitrate labelling method combined with the nitrification inhibition technique to distinguish microbial processes and their contribution to N2O emissions in long-term nitrogen fertilised lawns. We found that the N2O emission rate from the control treatment was 1.0 nmol g−1 h−1 over the incubation, with autotrophic nitrification contributing 60%. The N2O emission rate increased to 1.4 nmol g−1 h−1 from the soil treated with long-term N fertilization, and the contribution of autotrophic nitrification increased to 69%. N fertilization did not significantly increase the contribution of denitrification (24–26%) in the total N2O emissions. However, N fertilization substantially decreased the contribution of heterotrophic nitrification from 13 to 0.4% in the total N2O emissions. Co-denitrification to N2O was detected but the overall contribution was of minor importance (3–5%). The correlation analysis revealed that soil NO3− levels were the main influencing factors in the N2O producing microbial processes. Our results suggest that N fertilization altered both N2O production rates and the contribution pattern of microbial processes, and indicate the autotrophic nitrification and heterotrophic nitrification are more sensitive to N fertilization than denitrification and co-denitrification.
Heterotrophic nitrification is a process of organic nitrogen degradation completed by the participation of heterotrophic nitrifying microorganisms, which can accelerate the nitrogen transformation process. However, the current research mainly focuses on heterotrophic nitrifying bacteria and their ammonium degradation capacities. And there is little accumulation of research on fungi, the main force of heterotrophic nitrification, and their capacities to transform organic nitrogen. In this study, novel heterotrophic nitrifying fungus (XTY1) and bacterium (GS2) were screened and isolated from upland soil, and the strains were identified and registered through GenBank comparison. After 24 h single nitrogen source tests and 15N labeling tests, we compared and preliminarily determined the heterotrophic nitrification capacities and pathways of the two strains. The results showed that XTY1 and GS2 had different transformation capacities to different nitrogen substrates and could efficiently transform organic nitrogen. However, the transformation capacity of XTY1 to ammonium was much lower than that of GS2. The two strains did not pass through NH2OH and NO2− during the heterotrophic nitrification of organic nitrogen, and mainly generated intracellular nitrogen and low N2O. Other novel organic nitrogen metabolism pathways may be existed, but they remain to be further validated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.