During the Wenchuan Earthquake, with a magnitude of 5.12, collapses and rockfall hazards persisted for a long time after the initial investigations carried out by research fellow S. M. He and his team at the scene of the disaster in October 2008. It is possible that additional incidents of rockfalls in large quantities may continue in the same areas over the next ten to fifteen years. Furthermore, in the vast mountainous region of western China, the topographic relief is evident, and earthquakes occur frequently. Therefore, it is difficult to effectively defend against rockfall hazards. When designing protective structures, the key issue is the analysis of the mechanical response mechanism of the soil cushion layer of the upper cushion when subjected to the impact of rockfall. As such, a theoretical method was used to perform such an analysis. The cavity expansion and energy conservation model were adopted. Analytical solutions for the impact force and penetration depth were then derived. Furthermore, the impact force and penetration depth of rockfall were studied with the LS-DYNA software to obtain values for the impact forces and the penetration depth. Finally, the reliability of the theoretical method was evaluated using the cavity expansion, energy conservation, numerical simulation, Hertz, Japanese, Swiss, Australian, B. S. Guan, tunnel manual, and subgrade methods based on an engineering model. The results show that the cavity expansion and the energy conservation methods yielded consistent results. Meanwhile, the cavity expansion and the energy conservation methods also yielded consistent results with the numerical simulation, Japanese (obtained by laboratory experiment), Swiss (obtained by laboratory experiment), and Australian (obtained by field experiment) methods. The relevant methods and conclusions shall therefore be applied to the design of rockfall protection structure in future investigations.
When a tunnel is constructed in a karst area, crystallization of the drainage pipe caused by karst water often threatens the normal operation of the tunnel. This work contributes to this field of research by proposing a functional model based on the diffusion boundary layer (DBL) theory proposed by Dreybrodt in the 1990s. The model is formed by determining the flow rate distribution of the drainage pipe in a laminar flow state and turbulent state, and then by applying Fick’s diffusion law and Skelland’s approximate formula. Then, to further verify the applicability of the functional model, a model test was carried out in the laboratory and the test results are compared to the theoretical results. The results show that the crystallization rate of karst water is mainly affected by the roughness of the pipe wall, followed by the slope of pipes. The slope can affect flow state by controlling the flow rate, which in turn affects the crystallization rate of karst water. When the slope of the drainage pipe is 3, 4, and 5%, the error between the experimental results and the theoretical calculation results is 24.7, 8.07, and 27.9%, respectively, and when the liquid level in the pipe is 7.2, 10.2, and 13.3 mm, the error is 27.9, 9.82, and 2.07%, respectively. Considering that the flow will take away the crystalline deposits on the pipe wall in the experiment, although some results have certain errors, they do not affect the overall regularity.
The crystallization blockage of the tunnel drainage pipes in karst areas often threatens the normal construction of tunnels and affects operation of drainage systems. Based on basic theory of CaCO3 crystallization, this study analyses the law of the crystalline scale formation rate of tunnel drainage pipes in karst areas through three mass transfer mechanisms: convective mass transfer, molecular diffusion and wall ion reactions, obtains the calculation model of crystalline scale formation rate of drainage pipes, and verifies model by simulating crystalline scale formation tests of tunnel drainage pipes. The results show that factors such as the flow rate of karst water, the inner diameters of tunnel drainage pipes, the molecular diffusion coefficient, the dynamic viscosity of karst water, the molecular diffusion coefficient of calcium carbonate, the temperature of karst water, and the slopes of tunnel drainage pipes have certain influences on the crystallization of the tunnel drainage pipes in karst areas, and they promote or inhibit the formation of scale layers on the inner walls of the tunnel drainage pipes in karst areas by affecting the efficiency of convective mass transfer, molecular diffusion and wall ion reactions; under different test conditions, the average relative errors between the calculated results of the crystalline scale formation rate of drainage pipes and those of the pipes in the test group are 9.1%, 13.7%, 14.2% and 16.1% respectively. Considering the scouring effect of water flow on crystalline scale layers, although there are certain errors in the results, this does not affect the overall results
Axial fans play a pivotal role in the road tunnel ventilation system. Qualified performance of the axial fan is important for both safety and air quality maintenance reasons. Axial fans performance in situ test of Qinling Zhongnan Mountain highway tunnel, the second longest road tunnel in the world, is presented in this research. Performance test items and the qualification criterion, as well as a general framework for the road tunnel axial fan assessment, are recommended. Log-Tchebycheff method is suggested to confirm the location for the measuring lines and points. The precision of the log-Tchebycheff method in air flow rate measuring is verified by comparing with the biharmonic spline interpolation fitting result. The research shows that the log-Tchebycheff method has high precision and good efficiency in the air flow rate measurement of the road tunnel air duct. What is more, the biharmonic spline interpolation fitting method can be applied to obtain a more accurate result. The number of interpolation points of the biharmonic spline interpolation fitting method should be bigger than 2000 to provide quality results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.