The number of channels is one of the important criteria in regard to digital audio quality. Generally, stereo audio with two channels can provide better perceptual quality than mono audio. To seek illegal commercial benefit, one might convert a mono audio system to stereo with fake quality. Identifying stereo-faking audio is a lesser-investigated audio forensic issue. In this paper, a stereo faking corpus is first presented, which is created using the Haas effect technique. Two identification algorithms for fake stereo audio are proposed. One is based on Mel-frequency cepstral coefficient features and support vector machines. The other is based on a specially designed five-layer convolutional neural network. The experimental results on two datasets with five different cut-off frequencies show that the proposed algorithm can effectively detect stereo-faking audio and has good robustness.
Resampling is an operation to convert a digital speech from a given sampling rate to a different one. It can be used to interface two systems with different sampling rates. Unfortunately, resampling may also be intentionally utilized as a postoperation to remove the manipulated artifacts left by pitch shifting, splicing, etc. To detect the resampling, some forensic detectors have been proposed. Little consideration, however, has been given to the security of these detectors themselves. To expose weaknesses of these resampling detectors and hide the resampling artifacts, a dual-path resampling antiforensic framework is proposed in this paper. In the proposed framework, 1D median filtering is utilized to destroy the linear correlation between the adjacent speech samples introduced by resampling on low-frequency component. And for high-frequency component, Gaussian white noise perturbation (GWNP) is adopted to destroy the periodic resampling traces. The experimental results show that the proposed method successfully deceives the existing resampling forensic algorithms while keeping good perceptual quality of the resampled speech.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.