The development of efficient and low-cost electrocatalysts for oxygen evolution reaction is critical for improving the water electrolysis efficiency. Here we report a strategy using Fe substitution to enable the inactive spinel CoAl 2 O 4 to become highly active and superior to the benchmark IrO 2. The Fe substitution is revealed to facilitate the surface reconstruction into active Co oxyhydroxides under OER conditions. It also activates the deprotonation on the reconstructed oxyhydroxide to induce negatively charged oxygen as active site, thus significantly enhancing the OER activity of CoAl 2 O 4. Furthermore, it promotes the pre-oxidation of Co and introduces great structural flexibility due to the uplift of the O 2p levels. This results in an accumulation of surface oxygen vacancy along with lattice oxygen oxidation that terminates as Al 3+ leaches, preventing further reconstruction. We showcase a promising way to achieve tunable electrochemical reconstruction by optimizing the electronic structure for low-cost and robust spinel oxide OER catalysts.
The oxygen evolution reaction (OER) is the bottleneck that limits the energy efficiency of water-splitting. The process involves four electrons’ transfer and the generation of triplet state O2 from singlet state species (OH- or H2O). Recently, explicit spin selection was described as a possible way to promote OER in alkaline conditions, but the specific spin-polarized kinetics remains unclear. Here, we report that by using ferromagnetic ordered catalysts as the spin polarizer for spin selection under a constant magnetic field, the OER can be enhanced. However, it does not applicable to non-ferromagnetic catalysts. We found that the spin polarization occurs at the first electron transfer step in OER, where coherent spin exchange happens between the ferromagnetic catalyst and the adsorbed oxygen species with fast kinetics, under the principle of spin angular momentum conservation. In the next three electron transfer steps, as the adsorbed O species adopt fixed spin direction, the OER electrons need to follow the Hund rule and Pauling exclusion principle, thus to carry out spin polarization spontaneously and finally lead to the generation of triplet state O2. Here, we showcase spin-polarized kinetics of oxygen evolution reaction, which gives references in the understanding and design of spin-dependent catalysts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.