Necroptosis, a newly discovered form of programmed cell death that combines the features of apoptosis and necrosis, is important in various physiological and pathological disorders. However, the role of necroptosis on intestinal injury during sepsis has been rarely evaluated. This study aimed to investigate the presence of necroptosis in intestinal injury, and its contribution to intestinal injury in a piglet model challenged with Escherichia coli lipopolysaccharide (LPS). Firstly, a typical cell necrotic phenomenon was observed in jejunum of LPS-challenged pigs by transmission electron microscope. Protein expression of necroptosis signals including receptor-interacting protein kinase (RIP) 1, RIP3, and phosphorylated mixed-lineage kinase domain-like protein (MLKL), mitochondrial proteins including phosphoglycerate mutase family member 5 (PGAM5) and dynamin-related protein 1 (DRP1), and cytoplasmic high-mobility group box 1 (HMGB1) were time-independently increased in jejunum of LPS-challenged piglets, which was accompanied by the impairment of jejunal morphology, and digestive and barrier function indicated by lower activities of jejunal disaccharidases and protein expression of jejunal tight junction proteins claudin-1 and occludin. Pro-inflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6 were also dynamically induced in serum and jejunum of piglets after LPS challenge. Moreover, pretreatment with necrostatin-1 (Nec-1), an specific inhibitor of necroptosis, inhibited necroptosis indicated by decreased necrotic ultrastructural changes and decreased protein expression of RIP1, RIP3, and phosphorylated MLKL as well as PGAM5, DRP1, and cytoplasmic HMGB1. Nec-1 pretreatment reduced jejunal morphological injury, and improved digestive and barrier function. Nec-1 pretreatment also decreased the levels of serum and jejunal pro-inflammatory cytokines and the numbers of jejunal macrophages and monocytes. These findings indicate for the first time that necroptosis is present and contributes to LPS-induced intestinal injury. Nec-1 may have a preventive effect on intestinal injury during sepsis.
Xylooligosaccharide (XOS) has been considered to be an effective prebiotic, but its exact mechanisms remain unknown. This research was conducted to evaluate the effects of XOS on pig intestinal bacterial community and mucosal barrier using a lipopolysaccharide (LPS)-caused gut damage model. Twenty-four weaned pigs were assigned to 4 treatments in a 2 × 2 factorial design involving diet (with or without XOS) and immunological challenge (saline or LPS). After 21 d of feeding 0% or 0.02% commercial XOS product, piglets were treated with saline or LPS. After that, blood, small intestinal mucosa and cecal digesta were obtained. Dietary XOS enhanced intestinal mucosal integrity demonstrated by higher villus height, villus height-to-crypt depth ratio, disaccharidase activities and claudin-1 protein expression and lower crypt depth. XOS also caused down-regulation of the gene expression of toll-like receptor 4 and nucleotide-binding oligomerization domain protein signaling, accompanied with decreased pro-inflammatory cytokines and cyclooxygenase 2 contents or mRNA expression and increased heat shock protein 70 mRNA and protein expression. Additionally, increased Bacteroidetes and decreased Firmicutes relative abundance were observed in the piglets fed with XOS. At the genus level, XOS enriched the relative abundance of beneficial bacteria, e.g., Faecalibacterium , Lactobacillus , and Prevotella . Moreover, XOS enhanced short chain fatty acids contents and inhibited histone deacetylases. The correlation analysis of the combined datasets implied some potential connections between the intestinal microbiota and pro-inflammatory cytokines or cecal metabolites. These results suggest that XOS inhibits inflammatory response and beneficially modifies microbes and metabolites of the hindgut to protect the intestine from inflammation-related injury.
The contamination of foods and feeds with multiple mycotoxins threatens human and animal health after they accumulate in the food chain, producing various toxic effects. Feeds are almost universally contaminated...
Objective:The purpose of this study was to evaluate the protection of glutamate (GLU) against the impairment in intestinal barrier function induced by lipopolysaccharide (LPS) stress in weaned pigs.Methods: Twenty-four weaned pigs were divided into four treatments containing: 1) non-challenged control, 2) LPS-challenged control, 3) LPS+1.0% GLU, and 4) LPS+2.0% GLU.On day 28, pigs were treated with LPS or saline. Blood samples were collected at 0, 2 and 4 h post-injection. After blood samples collection at 4 h, all pigs were slaughtered, and spleen, mesenteric lymph nodes, liver and intestinal samples were obtained. Results: Dietary GLU supplementation inhibited the LPS-induced oxidative stress in pigs, as demonstrated by reduced malondialdehyde level and increased glutathione level in jejunum. Diets supplemented with GLU enhanced villus height, villus height/crypt depth and claudin-1 expression, attenuated intestinal histology and ultrastructure impairment induced by LPS. Moreover, GLU supplementation reversed intestinal intraepithelial lymphocyte number decrease and mast cell number increase induced by LPS stress. GLU reduced serum cortisol concentration at 4 h after LPS stress, and downregulated the mRNA expression of intestinal corticotropin-releasing factor signal [corticotrophin-releasing factor (CRF), CRF receptor 1 (CRFR1), glucocorticoid receptor (GR), Tryptase, nerve growth factor (NGF), tyrosine kinase receptor A (TrkA)], and prevented mast cell activation. GLU upregulated the mRNA expression of intestinal transforming growth factor β (TGF-β). Conclusion:These findings indicate that GLU attenuates LPS-induced intestinal mucosal barrier injury, which is associated with modulating CRF signaling pathway.
This study assessed the molecular mechanism of eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) protection against IPEC-1 cell damage induced by deoxynivalenol (DON). The cells were divided into six groups, including the CON group, the EPA group, the DHA group, the DON group, the EPA+DON group, and the DHA+DON group. RNA sequencing was used to investigate the potential mechanism, and qRT-PCR was employed to verify the expression of selected genes. Changes in ultrastructure were used to estimate pathological changes and endoplasmic reticulum (ER) injury in IPEC-1 cells. Transferrin receptor 1 (TFR1) was tested by ELISA. Fe2+ and malondialdehyde (MDA) contents were estimated by spectrophotometry, and reactive oxygen species (ROS) was assayed by fluorospectrophotometry. RNA sequencing analysis showed that EPA and DHA had a significant effect on the expression of genes involved in ER stress and iron balance during DON-induced cell injury. The results showed that DON increased ER damage, the content of MDA and ROS, the ratio of X-box binding protein 1s (XBP-1s)/X-box binding protein 1u (XBP-1u), the concentration of Fe2+, and the activity of TFR1. However, the results also showed that EPA and DHA decreased the ratio of XBP-1s/XBP-1u to relieve DON-induced ER damage of IPEC-1 cells. Moreover, EPA and DHA (especially DHA) reversed the factors related to iron balance. It can be concluded that EPA and DHA reversed IPEC-1 cell damage induced by DON. DHA has the potential to protect IPEC-1 cells from DON-induced iron imbalance by inhibiting ER stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.