Accessibility is important for road network planning and design, especially the accessibility of freeway entrances and exits, which reflects the convenience of travelers using freeways and the rationality of the connection between urban roads and freeways. Based on the path information of navigation map software, a new comprehensive travel impedance model to dynamically analyze the accessibility of freeway entrances and exits was proposed. The dynamic accessibility of freeway entrances and exits in Zhengzhou was studied using the proposed comprehensive impedance model, and the calculation results were analyzed. The accessibility of freeway entrances and exits is characterized by dynamic changes; the accessibility during the off-peak evening period is the highest, while that during the morning peak period and evening peak period is lower. The results of the comprehensive impedance model are roughly consistent with reality. From a location perspective, regardless of the period of time, the accessibility of freeway entrances and exits in the central and surrounding areas of Zhengzhou is always at a lower level, and during the off-peak afternoon period, the accessibility of the eastern part of the city is notably higher than that of the western part. Additionally, the accessibility of freeway entrances and exits is closely related to the traffic status of the road network and the characteristics of regional land use. The information can provide feedback for planning road networks and provide a reference for road network planning and traffic facility design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.